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Abstract 

Hedge Funds typically reveal some statistical properties like serial correlation, non-
normality, volatility clustering or leverage which have to be considered when risk 
positions of Hedge Funds are computed. We describe a simulation model based on a 
Markov-Switching autoregressive process that captures the specific features of 
Hedge Fund returns and allows especially for leverage effects in the data. The model 
is tested using publicly available Asian Hedge Fund Index data. We compare two 
different variants of the model by means of risk and performance measures. Our 
case study implies that if the leverage effect appears in the data, it is worth to fit for 
leverage in the parameter estimation process. 
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1 Introduction 

The Hedge Fund industry and especially the Asian Hedge Fund industry is clearly 
growing. The assets of Asia-focused Hedge Funds have grown fivefold over the 
years 2002 to 2005: from barely 20 billion USD in 2002 to an estimated 100 billion 
USD at the end of 2005. Some industry players believe the total could reach 250 
billion USD by 2010 (see Gray (2006)). According to figures from ‘Eurekahedge’, a 
Singapore based research firm, there were nearly 660 Asia-focused Hedge Funds 
(HF) – including Japan and Australia – in November 2005, an increase of almost 
20% from six months earlier.  
 
HF often function as trigger and multiplier of crises and problems. For example, 
Asian HF played a notable role in the Asian Currency Crisis of 1997 (see, e.g., Fung 
and Hsieh (2000)). Another failure of appropriate risk management is the downturn of 
the US-based Long Term Capital Management (LTCM) HF in 1998 that was due to 
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an underestimation of risk (see, e.g., Jorion (2000)). This illustrates the importance of 
a sound risk management and strongly emphasizes a risk-adjusted performance 
measurement.  
In this paper we use two specifications of a Markov Switching Model to forecast the 
risk positions of HF. Markov Switching Models (MSM) have become increasingly 
popular in economic studies (see, e.g., Hamilton (1994), Billio and Pelizzon (2000), 
Timmermann (2000) or Brunner and Hafner (2006)) and are able to capture the 
typical statistical properties of HF, for example non-normality, serial correlation and 
volatility clustering. Another typical HF feature is the leverage effect. To the authors’ 
best knowledge it is not yet captured by applications of Markov Switching Models in 
the literature. We extend the existing MSM of Brunner and Hafner (2006) by deriving 
the autocorrelation function of the leverage effect for the Method of Moments 
according to Timmermann (2000). Hence, we are able to analyse if it is worth to fit for 
the leverage effect that can be found in HF data.  
The two main questions we address in this study are the following: can typical 
statistical properties of HF, as found in the US market (see, e.g., Lo (2001), Kat and 
Lu (2002) or Capocci and Hübner (2004)) also be confirmed for Asian HF? Is it worth 
including the leverage effect into a MSM used to predict the risk exposure or 
performance measures of HF? 
The paper is organized as follows. In Section 2 we first describe the class of MSM in 
general and then derive two specifications for the parameter estimation. The various 
risk and performance measures are introduced in Section 3. Section 4 contains the 
statistical analysis of the empirical data from Asian HF Indices. In Section 5 the 
results of the two compared MSM specifications subject to the probability 
distributions and risk and performance measures are presented. Section 6 
concludes.  

2 Markov Switching Model 

Since HF typically reveal some statistical properties like non-normality, 
autocorrelations, volatility clustering and leverage, a normal distribution is not 
appropriate to describe the evolution of HF returns. Instead, we use a MSM as 
introduced in Hamilton (1994). We extend the modelling approach of Brunner and 
Hafner (2006) so that it is not only able to capture non-normality, autocorrelations 
and volatility clustering, but also the leverage effect.  
As time series processes can change dramatically over time, the idea of MSM is to 
model different states (or regimes) a time series process can be in. Each regime of a 
time series process is described by its own density function, which leads to the 
possibility of capturing typical features of HF returns.1 The changes of regimes are 
modelled via a Markov chain ( ) IRttS ∈  with transition probabilities given by  

  { } { } ijttttt piSjSPkSiSjSP ======= −−− 121 |,...,|        (1) 

where ijp  denotes the transition probability of changing from state i  in period 1−t  to 
state j  in period t . The transition matrix is given by  
                                                 
1 The joint density distribution reveals moments different from those of the single density functions, 
with especially the skewness and excess kurtosis being different from zero. Thus, the non-normality of 
HF returns is accounted for, while for example the feature of volatility clustering is captured by time-
varying volatilities.  
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In the following, we take 2=N  (i.e. only two possible states) for a first-order Markov 
switching autoregressive time series process similar to Brunner and Hafner (2006). 
The return tR  at time t  is given by 

  ( ) tSStSt ttt
RR εσµµ ⋅+−⋅Φ+=

−− 11  ,         (3) 

where ( ) ...,1,0 ~ ,1 diiNtε<Φ . tε  and tS  are assumed to be independent at all leads 
and lags and Rt is stationary. 1=tS  if the process is in state 1, and 2=tS  if it is in 
state 2.  

Let 1, 2211 <pp  and 02211 >+ pp  so that the Markov chain is ergodic, then there exists 
a unique stationary distribution ( )21,' ππ=π  given by 
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The parameter vector  

  ( )21122121 ,,,,,, ppΦ= σσµµθ           (5) 

is estimated by moment matching. For this, we set up a system of seven equations to 
get an estimate for the seven parameters of θ .2 We set up seven equations by 
equating the first to fourth centred moments (four equations) to the corresponding 
distribution moments as well as the autocorrelation of lag 1 to its empirical 
counterpart. The remaining equations can be chosen out of  

• the autocorrelations of lag n , 0INn∈ , 

• the autocorrelations of squared returns (volatility clustering) of lag m , 0INm∈ , 

• and the autocorrelations between yesterday’s returns and today’s squared returns 
(leverage effect) of lag 1. 

Again, the chosen autocorrelations are equated to the corresponding empirical 
autocorrelations.  
The first to fourth centred moments and autocorrelations (serial correlation and 
volatility clustering) of a first-order Markov switching autoregressive process are 
given by (see Timmermann (2000) or Brunner and Hafner (2006)):  
 
mean µ :  

  Sµπ'=µ              (6) 

variance 2σ :   

                                                 
2 When the number of moment conditions is the same as the number of unknown parameters, the 
MoM estimator equals the Generalized Method of Moments (GMM) estimator, since the weighting 
matrix has no impact (see Hamilton (1994), Chapter 14). 
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excess kurtosis ek : 
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autocorrelation of lag n  nautocor : 

  ( )( ) ( )( ) ( )[ ]2S2SS σBIπ1µ1µBπ 12
2n ''1 −

Φ−Φ+−⊗−= nnautocor µµ
σ

   (10) 

with 0INn∈ , 

autocorrelation of squared returns lag m  mautocorsq :  

  
[ ]( ) [ ]( )[ ]

[ ]( )[ ]222

2222

m

tt

mtmttt

RERE

RERRERE
autocorsq

−

−−
= −−       (11) 

with 
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In our approach we also include the autocorrelation between yesterday’s returns and 
today’s squared returns of lag 1 (leverage effect) 1autocorle : 
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2I , Φ  is the autocorrelation parameter, tR  the HF return in period t  and ⊗  

the element by element multiplication.  
Hence, the parameter vector θ  (see (5)) is estimated via 
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with 3=++ pmn  and where µ~  resembles the sample mean, 2~σ  the sample 
variance, s~  the sample skewness, ke~  the sample excess kurtosis, nutocora~  
( )0INn∈  the sample autocorrelations of lag n , mutocorsqa~  ( )0INm∈  the sample 
autocorrelations of squared returns of lag m  and putocorlea~  { }( )10,p∈  the sample 
autocorrelations of yesterday’s returns and today’s squared returns if 1=p , while 

0=p  indicates that this number is not considered.  

We tested different specifications of (13) and found the best results when using 
autocorrelation of lag 1, volatility clustering and autocorrelation of lag 2 (see also 
Brunner and Hafner (2006)) or autocorrelation of lag 1, volatility clustering and 
leverage effect. Hence, we will focus on these two variants in the empirical part. 

3 Risk and performance measures 

In this section, an overview on some well-known risk and performance measures is 
given. We differentiate between tail related risk measures like Value at Risk and 
Conditional Value at Risk and performance measures based on the whole distribution 
like Sharpe Ratio, Adjusted Sharpe Ratio, Omega and Sharpe-Omega. 
                                                 
3 The matrix B  gives the transition probabilities for the “time-reversed” Markov chain that moves back 
in time. In the case with two states, the “backward” transition probability matrix B  equals the “forward” 
transition probability matrix P . For more details see Timmermann (2000), p. 87. 



Value at Risk 

The Value at Risk αVaR  of a random variable R  to a confidence level α−1  is defined 
by (see, e.g., p. 252 of Zagst (2002)) 

  ( ) ( ) αα RRERVaR −= .         (14) 

where  

  ( ){ }αα ≤<∈= xRPIRxR :sup         (15) 

is the value of R  that will be exceeded with probability α−1 .  

Despite its popularity, VaR has some negative properties: it does not address the 
distribution of potential losses on those rare events when the VaR estimate αVaR  is 
exceeded. Furthermore, it is no coherent risk measure (see, e.g., p. 254 of Zagst 
(2002)). A risk measure that addresses both disadvantages is the Conditional Value 
at Risk. 

Conditional Value at Risk 
The Conditional Value at Risk (CVaR) is a risk measure that focuses on the losses 
which exceed VaR. In the literature, CVaR is also referred to as Expected Shortfall.4  

αCVaR  to a predefined confidence level α−1  is defined as the average loss given 
that αVaR  is exceeded (see, e.g., p. 263 of Zagst (2002)):  

  ( ) ( )αα RRRERCVaR ≤−= | ,        (16) 

where αR  is given by (15).  

It can be easily seen that CVaR is at least as great as VaR, and usually it will be 
greater. As already mentioned, CVaR is a coherent risk measure (see, e.g., Acerbi 
and Tasche (2002)) and therefore more appropriate than VaR when assessing the 
risk of a portfolio.  

Sharpe Ratio  
A popular performance measure is the Sharpe Ratio (SR) introduced by William F. 
Sharpe in 1966. It measures the risk-adjusted performance of an investment or a 
trading strategy relative to a benchmark asset, such as the risk-free rate of return.  

The SR of an asset return R , ( )RSR , is defined as the expected excess return per 
unit of risk associated with the excess return: 

  ( ) ( )
( ) R

fRf r
RSTD
rRE

RSR
σ

µ −
=

−
=            (17) 

where the expected excess return is given as the expected asset return ( ) RRE µ=  
beyond the risk free rate of return fr  and the risk is given by the standard deviation 
of R , ( ) RRSTD σ= .  

The SR only is an appropriate performance measure when the return distribution 
solely depends on two parameters: location and scale parameter. Thus the SR does 
                                                 
4 Note that this is only true for continuous random variables. For more details and proof see Acerbi 
and Tasche (2002), p. 10. 



not measure correctly the performance of non-normally tailed or skewed return 
distributions, such as those of fat tailed and negatively skewed HF returns. 
Therefore, a more generalized SR, called the Adjusted Sharpe Ratio, is presented.  

Adjusted Sharpe Ratio  
The Adjusted Sharpe Ratio (ASR) extends the SR by taking non-normality in form of 
skewness and excess kurtosis of the asset returns into account.  

The ASR of an asset return R , ( )RASR , is given by (see, e.g., p. 44 of Alexander and 
Sheedy (2004)) 

  ( ) ( ) ( ) ( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ −+⋅= 2

246
1 RSRRekRSRRsRSRRASR                (18) 

where ( )Rs  and ( )Rek  represent the skewness and excess kurtosis of an asset return 
R , respectively.  
Although the ASR is more appropriate than the SR for measuring the performance of 
non-normally distributed asset returns, the ASR still does not capture all the 
information – only the first four moments – contained in the return series.  

Omega 
The Omega measure introduced by Keating and Shadwick (2002) was developed 
with the intention to take the entire return distribution into account and is defined as 
the ratio of the gain with respect to a threshold L and the loss with respect to the 
same threshold. Then Omega LΩ  with respect to a threshold L is given by 5 

  
( )[ ]

( )∫

∫ −
=Ω L

a

b

L
L

drrF

drrF1
            (19) 

where ( )ba,  is the interval of returns and F  is the cumulative distribution of returns.  

Sharpe-Omega 
A new version of Omega introduced by Kazemi et al. (2003) is the so called Sharpe-
Omega given by  

  ( )

( )
1−Ω=

−
=Ω

∫
LL

a

L

drrF

LRES .         (20) 

The formula for Sharpe-Omega consists of the numerator of (17), where the risk-free 
rate of return fr  is replaced by the threshold L, and the denominator of (19).  

Since the numerator of (20) corresponds to the price of a put option, Sharpe-Omega 
represents a measure of risk/return that is more intuitive than Omega. Since the price 
of the put option is the cost of protecting an investment’s return below the target ratio 
(given by L), it is a reasonable measure of the investment’s riskiness. 
                                                 
5 In fact, the evaluation of an investment with the Omega function should be considered for thresholds 
between 0% and the risk free rate, see Bacmann and Scholz (2003), p. 3.  



4 Statistical properties of Asian Hedge Funds 

This section aims to characterize some of the typical features found in HF return time 
series. Therefore, we first give a short summary on the statistical properties. Then, 
we analyse if these properties also apply for our Asian HF data.  
Compared to stocks and bonds, HF reveal some typical statistical properties, which 
have been confirmed by a number of studies, for example Kat and Lu (2002). Main 
statistical properties of HF, as for example pointed out in Brunner and Hafner (2006), 
are: 

• Non-normality: HF time series are characterized by negatively skewed and fat 
tailed returns. Skewness is defined as the degree of asymmetry of a probability 
distribution. A negative skewness implies that the left tail is the longest and that 
the mass of the distribution is concentrated on the right side of the density 
function. Kurtosis is defined as the fatness of the tails of a probability distribution. 
A normally distributed random variable has an excess kurtosis of zero. Now, a 
positive excess kurtosis implies fatter tails, meaning that extreme or tail events 
are more likely.  

• Autocorrelation: In contrast to long-only equity portfolios and mutual funds, HF 
returns exhibit in most cases strong serial correlation (see, e.g., Getmansky et al. 
(2004). Positive serial correlation or autocorrelation means that today’s HF 
returns depend on last periods’ HF returns. When today’s returns only depend on 
yesterday’s returns, we speak of first-order autocorrelation; when today’s returns 
depend on the returns two (three) periods ago, we speak of second-order (third-
order) autocorrelation. 

• Volatility Clustering: Additionally, HF time series often exhibit volatility clustering, 
which means that large changes in prices tend to follow large changes in prices, 
of either sign, and small changes tend to follow small changes. While the returns 
themselves may be uncorrelated, absolute returns or their squares can be 
positively autocorrelated. This means that volatility is dependent upon past 
realizations of the volatility process. 

As already mentioned above, our special focus in this paper is on an additional 
property, the leverage effect (see, e.g., Alexander (2005) for a theoretical description 
and Bae et al. (2007) for an empirical study).  

• Leverage Effect: The leverage effect implies that volatility is higher in a falling 
market than in a rising market. The reason for this may be that when the equity 
price falls, the debt remains constant in the short term. So the debt-equity ratio 
increases, the firm becomes more leveraged, the future of the firm becomes more 
uncertain and the equity price therefore becomes more volatile.  

For the empirical part of this paper we use publicly available HF Index data from 
‘Eurekahedge’, a hedge fund research company based in Singapore.6 We focus on 
those eight HF Index return time series (monthly data, ranging form December 1999 
to June 2006) that include the whole region Asia/Pacific (see Figure 1). 
 
                                                 
6 For more information on the HF Indices see www.eurekahedge.com.  



Monthly Log Returns of Asian HFI
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Figure 1: Monthly Log Returns of Asian HFI 

 

Basic Statistics Jarque-Bera 
Test 

 
mean 
(in %) 

std.dev. 
(in %) skewness excess 

kurtosis
max 

(in %)
min 

(in %) Statistic p-
value 

HFI 1 0.872 1.707 -0.131 -0.639 4.343 -3.202 1.317 51.76%

HFI 2 1.326 1.552 1.164 4.839 8.403 -2.493 101.002 0.00%

HFI 3 0.923 1.434 -0.955 1.995 3.916 -4.285 27.003 0.00%

HFI 4 0.570 1.400 1.346 5.070 6.027 -3.067 115.101 0.00%

HFI 5 0.849 1.921 -0.246 -0.527 4.587 -4.464 1.512 46.95%

HFI 6 0.783 8.745 -0.551 3.216 22.911 -33.28 40.246 0.00%

HFI 7 0.751 2.046 -0.003 1.460 7.548 -5.519 8.073 1.77%

HFI 8 0.820 1.554 0.980 3.987 7.601 -3.118 69.499 0.00%

Table 1: Basic Statistics and Jarque-Bera Test for Asian HFI 

 
Table 1 gives a summary of the basic statistics for the Asian HF Indices (HFI). Five 
out of eight HFI exhibit a negative skewness, and the excess kurtosis is mainly 
positive. From the Jarque-Bera Test (see the last two columns of Table 1) we see 
that the null hypothesis of normally distributed returns can be rejected for six Asian 
HFI at the 5% significance level.  



As a result, we can say that most Asian HFI are non-normally distributed. Thus, the 
typical HF feature of non-normality also applies for Asian HFI returns.  
 
The empirical autocorrelations, volatility clustering and leverage effect are shown in 
Table 2. Most HF are positively serially correlated, and the absolute values are 
gradually decreasing. Volatility clustering ranges from -0.018 to 0.521, whereas the 
leverage effect ranges from -0.321 to 0.426. All three statistical properties of Table 2 
can be statistically confirmed with the Ljung-Box Test for autocorrelations, and thus 
are in line with previous studies (see, e.g., Getmansky et al. (2004)).  
To sum it up, our empirical HF data on Asian HFI reveal the typical HF features: non-
normality, serial correlation, volatility clustering and leverage effect.  
 

autocorrelation of lag

 1 2 
volatility 

clustering 
leverage7 

effect 

HFI 1 0.152 0.126 0.159 0.255 

HFI 2 0.464 0.075 0.521 0.426 

HFI 3 0.106 -0.011 0.014 -0.056 

HFI 4 0.179 -0.011 -0.005 0.068 

HFI 5 0.135 0.086 0.100 0.255 

HFI 6 -0.041 0.001 0.284 -0.321 

HFI 7 0.084 0.087 0.313 -0.100 

HFI 8 0.146 0.246 -0.018 0.033 

Table 2: Autocorrelations, volatility clustering and leverage effect of Asian HFI  

 

5 Empirical Comparison of Markov Switching Models 

In this section we want to compare the two different variants of parameter estimation 
introduced in Section 2 and their impact on risk and performance measures. The first 
one (‘MSM lag 2’) is similar to the one in Brunner and Hafner (2006), while the 
second one (‘MSM le’) takes the leverage effect instead of the autocorrelation of lag 
2 into account. Both of them take account for non-normality by including skewness 
and excess kurtosis and furthermore, the two HF features volatility clustering and 
autocorrelation of lag 1 (see Table 3). 
 
                                                 
7 For stock returns the leverage effect has to be negative as low stock returns are associated with 
higher volatilities (see, e.g., Alexander (2005) or Bae et al. (2007)). In contrast to this, Hedge Funds 
can follow various investment strategies, e.g. short equities or long commodities, which might result in 
a positive value for the leverage effect coefficient. Nevertheless, the economic interpretation is the 
same as for the case of stock returns.  



 MSM lag2 MSM le 

non-normality + + 
volatility clustering + + 
autocorrelation lag 1 + + 
autocorrelation lag 2 +  
leverage effect  + 

Table 3: Survey of MSM models and incorporated features 

 
For both sets of estimated parameters, we simulate the evolution of the HFI return 
time series for 60 months, using a Monte Carlo Simulation with 5.000 paths.  
 

Comparison of risk and performance measures 
Then we look at the probability distribution of the return series after five years. More 
detailed, we look at the risk and performance measures (VaR, CVaR, SR, ASR, 
Omega and Sharpe-Omega, see Section 3) of the return distributions and compare 
these figures to the empirical risk and performance measures.  
Table 4 shows the empirical risk and performance measures as well as those of the 
simulated ‘MSM lag2’ and ‘MSM le’, respectively. The last row additionally contains 
the ratio of empirical leverage to empirical autocorrelation of lag 2 (‘Ratio le/lag2’) as 
an indicator for the severity of leverage in the data. 
We concentrate on the 5% VaR and CVaR, respectively, because conclusions drawn 
from the 1% measures could be misleading as our empirical return series are rather 
small. In half the cases for the risk measures VaR and CVaR, the ‘MSM le’ 
outperforms ‘MSM lag2’. Thereby, we can see that the more distinct the leverage 
effect compared to the autocorrelation of lag 2, the more often tend VaR and CVaR 
measures of ‘MSM le’ to be closer to the empirical values than the corresponding 
‘MSM lag2’ measures.  
For the remaining performance measures, which take the whole distribution into 
account, the specification ‘MSM le’ is clearly preferable, since it yields – except for 
HFI 7 – the smaller differences to the empirical performance measures. Thus, we can 
conclude that ‘MSM le’ is better in forecasting the performance measures SR, ASR, 
Omega and Sharpe-Omega.  

Comparison of simulated and empirical distribution functions 
We also apply the chi-squared test of goodness of fit (see, e.g., Bamberg et al. 
(2007)) to compare the different simulated HF return distributions, and, on the other 
hand to compare the left tail of the simulated HF return distributions for the ‘MSM le’ 
and ‘MSM lag2’ to each other.  
The chi-squared test of goodness of fit tests if an unknown distribution resembles a 
given hypothetical distribution. The smaller the test statistic, the better the unknown 
distribution (i.e. the simulated distribution) resembles the hypothetical one (i.e. the 
empirical distribution).  
 



 HFI 1 HFI 2 HFI 3 HFI 4 HFI 5 HFI 6 HFI 7 HFI 8

Empirical -1.98 -1.07 -1.40 -1.36 -2.01 -12.0 -2.01 -1.16 

MSM lag2 -2.14 -1.15 -2.00 -1.99 -2.23 -12.4 -2.42 -1.52 VaR 5% 

MSM le -1.74 -1.00 -1.79 -1.81 -2.17 -12.9 -2.54 -1.89 

Empirical -2.59 -1.67 -3.07 -2.30 -3.17 -22.4 -4.08 -2.29 

MSM lag2 -2.73 -2.25 -2.65 -3.20 -3.03 -17.8 -3.58 -2.83 CVaR 
5% 

MSM le -2.33 -2.02 -2.45 -3.03 -2.81 -18.6 -3.76 -3.20 

Empirical 0.36 0.69 0.47 0.23 0.31 0.06 0.24 0.37 

MSM lag2 0.34 0.65 0.41 0.19 0.27 0.08 0.26 0.35 SR 

MSM le 0.35 0.67 0.42 0.22 0.32 0.07 0.22 0.35 

Empirical 0.36 0.72 0.43 0.24 0.31 0.06 0.24 0.38 

MSM lag2 0.33 0.63 0.39 0.19 0.28 0.08 0.26 0.34 ASR 

MSM le 0.35 0.66 0.42 0.22 0.32 0.07 0.22 0.35 

Empirical 2.42 7.22 3.36 2.10 2.11 1.21 1.93 2.89 

MSM lag2 2.21 5.69 2.61 1.87 1.99 1.24 1.96 2.60 Omega 

MSM le 2.43 6.20 2.80 1.99 2.22 1.21 1.78 2.93 

Empirical 1.42 6.22 2.36 1.10 1.11 0.21 0.93 1.89 

MSM lag2 1.21 4.69 1.61 0.87 0.99 0.24 0.96 1.60 Sharpe-
Omega 

MSM le 1.43 5.20 1.80 0.99 1.22 0.21 0.78 1.93 

Ratio le/lag2 2.03 5.68 5.14 6.12 2.97 427.8 1.15 0.13 

Table 4: Comparison of risk and performance measures 

 
The results for the tests performed on the entire simulated distribution (‘entire’) and 
on the left tail of the simulated distribution (‘tails’) are presented in Table 5. In each 
case, the specification (lag2 for ‘MSM lag2’ and le for ‘MSM le’) is named, which has 
the lowest test statistic. Hence, Table 5 gives the specification that rebuilds most 
appropriate the entire empirical return distribution or the tails of the empirical return 
distribution, respectively. The HFI are arranged according to the ratio of leverage 
effect to autocorrelation lag 2. 
 

 HFI 6 HFI 4 HFI 2 HFI 3 HFI 5 HFI 1 HFI 7 HFI 8 
entire le lag2 lag2 le lag2 lag2 lag2 lag2 

tails le le le le lag2 le lag2 le 
Ratio le/lag2 427.88 6.12 5.68 5.14 2.97 2.03 1.15 0.13 

Table 5: Preferred specifications (‘MSM lag2’ or ‘MSM le’) after the distribution fit 



If we look at the entire distributions, ‘MSM le’ is only two times preferred, but both 
cases correspond to HFI that have a high ‘Ratio le/lag2’ and the difference between 
the test statistics for HFI 2 is quite small. This may be an indication for the fact that 
the more distinct the leverage effect compared to the autocorrelation lag 2, ‘MSM le’ 
tends to simulate the entire return distribution better than ‘MSM lag2’. 
In contrast, ‘MSM le’ is superior to ‘MSM lag2’ regarding the question, which MSM 
specification fits the tails of the empirical distribution function better. This result 
supports the above observation that VaR and CVaR measures of ‘MSM le’ tend to be 
closer to the empirical values than the corresponding ‘MSM lag2’ measures the 
larger the ratio le/lag2.  

6 Conclusion 

As already pointed out in the introductory section, a sound risk management for HF is 
essential to anticipate the risk exposure. Therefore we extended the MSM model of 
Brunner and Hafner (2006) by including the leverage effect that is a typical HF 
feature with impact on the risk exposure. Then we compared the two MSM 
specifications (one with leverage effect ‘MSM le’, the other without ‘MSM lag2’) to 
see which specification is better to forecast risk and performance measures. 
The following results can be stated:  

• The typical HF features non-normality, serial correlation, volatility clustering and 
leverage effect apply for Asian HFI. 

• The larger the relative differences between leverage effect and autocorrelation lag 
2, the better the specification ‘MSM le’ tends to be. This is indicated by the 
comparison of the various risk and performance measures, and on the other hand 
confirmed by the chi-squared test of goodness of fit. 

• ‘MSM le’ clearly reproduces better estimates for the performance measures SR, 
ASR, Omega and Sharpe-Omega than ‘MSM lag2’. 

• Additionally, ‘MSM le’ is also better to fit the tails of the probability distribution 
function to the empirical one. 

It is therefore worth to fit the model for the leverage effect, especially if the ratio 
‘le/lag2’ is large. 
For future prospects, one could try to verify these results with longer empirical time 
series on Asian HFI, Asian single HF and perhaps also for Asian Fund of Funds.  

Appendix 

A. Proof of Markov Regime Switching formula 
For sake of completeness we derive the formula of the leverage effect (Equation 
(13)). This is similar to the derivation of the autocorrelation formulas (see, e.g., 
Timmermann (2000)).  
The underlying process is given by Equation (3). Further assumptions are:  
 



 

1. The process starts from its steady-state distribution.  

2. The error terms tε  are iid. 

3. tε  and tS  are independent at all leads and lags. 

4. tR  is stationary. 

Using (3) we get for the squared return 2
tR  at period t  
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Noting, that linear terms of tε  will be uncorrelated with terms dated period t  or 
earlier, the last line of (21) can be omitted when inserting (21) into the following 
equation: 
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where all covariance terms that include tε , tS  or ( )
tStR µ−  with odd exponents cancel 

out. This follows from assumptions 2 and 3. The last two terms of (22) can also be 
deleted, due to the fact that [ ] StRE µπ'==µ  (for proof see Timmermann (2000)).  

Hence, (22) reduces to 
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where terms T1 and T3 are given by 

  ( )( )( )2SS µ1µBπ ⊗−= µ'1T          (24) 

  ( )( )( )2SS σ1µBπ ⊗−= µ'3T          (25) 

To derive expressions for the second and forth terms T2 and T4, notice that  
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where 2I  is the 2-dimensional identity matrix and B  the backward transition 
probability matrix.12 The third equation follows from the property of a geometric series 
and the fact that ( )BI 2

2 Φ−  is invertible. Since 1<Φ  this will automatically be 
satisfied for all transition probability matrices since B  has a single eigenvalue equal 
to unity and its remaining eigenvalues are less than one.  
Using (26), we get 

  ( ) ( )( )( )1µσBIBπ S
2
S2 µ−⊗Φ−Φ=

−122'2T        (27) 

  ( )( )( )S2
S2 µσBIBπ ⊗Φ−Φ=

−12'24T         (28) 

Inserting (24), (25), (27) and (28) into (23), we receive the nominator of the leverage 
formula (12).   
To derive the denominator of (12), we use the variance formula 
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and the formula for the fourth centred moment (for a proof see Timmermann (2000)) 
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Setting 0=µ  we obtain 
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which completes the proof. 
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