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Abstract 
 
We show how to price credit default options and swaps based on a four-factor defaultable 
term-structure model. One of the key factors is a macro-economic factor that takes into 
account the impact of the general economy on the quality of firms. We derive the pricing 
functions and show how to calibrate the model to market prices. Basically, we need three 
pieces of information: the actual non-defaultable, the defaultable and the zero-recovery 
defaultable term structure. The first two pieces can be easily obtained from observable market 
data, the latter can be inferred from the other two. We illustrate the whole pricing process, 
from model specification and parameter estimation to the actual credit derivatives pricing. 
Our data includes the recent credit crisis and proves the performance of our model even 
through times of market dislocation.   
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Introduction 
 
In this paper, we develop pricing formulas for credit default options and swaps based on the 
extended Schmid and Zagst defaultable term structure model (see Schmid et al. (2008)) which 
is an extension of the model of Schmid and Zagst (2000). We review the underlying 
defaultable term structure model in Chapter 1. As a hybrid model it combines ideas of 
structural and reduced-form models which can actually be shown to coincide under certain 
conditions (see, e.g., Duffie and Lando (2001)). The model is mainly driven by a non-
defaultable short rate and a short-rate credit spread. It is assumed that the level of the interest 
rates depends on a general market factor. One of the factors that determine the credit spread is 
the so-called uncertainty index which can be understood as an aggregation of all information 
on the quality of the firm currently available: The greater the value of the uncertainty process 
the lower the quality of the obligor. The uncertainty index models the idiosyncratic default 
risk of a counterparty. In addition, credit spreads are driven by the general market factor 
which can be interpreted as a measure for the systemic credit risk of a counterparty. By doing 
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so we relate credit spreads to the business cycle. We assume that the spread between a 
defaultable and a non-defaultable bond is considerably driven by the uncertainty index and the 
general market factor but that there may be additional factors which influence the level of the 
spreads: at least the contractual provisions, liquidity and the premium demanded in the market 
for similar instruments have a great impact on credit spreads. Our approach seems to be 
reasonable in that credit spreads provide useful observable information on data upon which 
pricing models can be based. In addition, the model can be fitted directly to match the actual 
process followed by interest-rate credit spreads. The analytical solution obtained for 
defaultable bonds can be implemented easily in practice, as all the variables and parameters 
can be implied from market data. 
 
In Chapter 2 we develop formulas for the pricing of credit default options and swaps. 
Therefore, we need the following data for all maturities T > 0: The default-free term structure 
of bond prices P(t,T), the defaultable term structure of bond prices Pd(t,T), and the defaultable 
term structure of bond prices under zero recovery Pd,zero(t,T). The first piece of information, 
the default-free term structure, is easily obtained. Possible choices are government curves or 
swap curves in developed economies. The second piece is the defaultable term structure of the 
reference credit. Ideally it is obtained directly from the prices of the reference credit’s bonds. 
Finally, the third piece of input data is the defaultable bond prices under zero recovery. These 
prices are usually unobservable. But we can derive the zero-recovery term structure of bond 
prices from the default-free and defaultable term structures of bond prices. 
 
In Chapter 3 we will briefly review how to estimate the parameters of the underlying 
processes based on historical data between 2002 and 2008. Therefore, we use Kalman 
filtering techniques (see, e.g., Schmid et al. (2008), Oksendal (1998), and Harvey (1989)). 
Furthermore, we fit our model to market prices of credit default swaps during the credit crisis 
of 2007/2008. We show how our model picks up latest market signals and performs well even 
through times of very volatile markets.  
 
 
1 The Underlying Defaultable Term Structure Model 
 
In the following, we assume that markets are frictionless and perfectly competitive, that 
trading takes place continuously, that there are no taxes, transaction costs, or informational 
asymmetries, and that investors act as price takers. To determine the prices of default options 
and swaps it is essential to use a defaultable term-structure model. Therefore, we fix a 
terminal time horizon T*. Uncertainty in the financial market is modeled by a complete 
probability space (Ω,G,Q) and all random variables and stochastic processes introduced 

below are defined on this probability space. We assume that (Ω,G,Q) is equipped with three 

filtrations H, F, and G, i.e. three increasing and right-continuous families of sub-σ-fields of 

G. The default time Td of an obligor is an arbitrary non-negative random variable on (Ω,G,Q). 

For the sake of convenience we assume that Q(Td = 0) = 0 and Q(Td > t) > 0 for every 

t∈(0,T*]. For a given default time Td we introduce the associated default indicator or hazard 
function d{T t}

H(t) 1
<

=  and the survival indicator function *L(t) 1 H(t),  t (0,T ]= − ∈ . Let 

*t 0 t T
( )

≤ ≤
=H H  be the filtration generated by the process H. In addition, we define the filtration 

*t 0 t T
( )
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=F F  as the filtration generated by the multi-dimensional standard Brownian motion 



W’=(Wr,Wω,Wu,Ws) and *t 0 t T
( )

≤ ≤
=G G  as the enlarged filtration G=H∨F, i.e. for every t we 

set Gt=Ht∨Ft. All filtrations are assumed to satisfy the usual conditions of completeness and 
right-continuity. For the sake of simplicity we furthermore assume that F0 is trivial. It should 

be emphasized that Td is not necessarily a stopping time with respect to the filtration F but of 

course with respect to the filtration G. If we assumed that Td was a stopping time with F, then 

it would be necessarily a predictable stopping time. This situation is the case in all traditional 
structural models.  
 
We will assume throughout that for any t∈(0,T*] the σ-fields FT* and Ht are conditionally 

independent (under Q) given Ft. This is equivalent to the assumption that F has the so-called 

martingale invariance property with respect to G, i.e. any F-martingale follows also a G-

martingale (see Bielecki and Rutkowski (2004), p. 167). For the technical proofs we will use 
another condition which is also known to be equivalent to the martingale invariance property 
(see Bielecki and Rutkowski (2004), p. 242): For any t∈(0,T*] and any Q-integrable FT*-

measurable random variable X we have EQ[X|Gt]=EQ[X|Ft]. The modeling takes already place 

after measure transformation, i.e. we assume that Q is a martingale measure and all 

discounted security price processes are Q-martingales with respect to a suitable numéraire. As 

numéraire we choose the money-market account ))(exp()(
0
∫=
t

dllrtB , where r is the non-

defaultable short rate. In the following, all processes are defined on the probability space 
(Ω,G,Q). 
 
Assumption 1 The dynamics of the non-defaultable short rate are given by the following 
stochastic differential equation (SDE): 
 

*
r r r r rdr(t) = [ (t) b (t) a r(t)]dt dW (t),  0 t Tωθ + ω − +σ ≤ ≤  (1) 

 
where ar, brω, σr are positive constants, and θr is a non-negative valued deterministic function. 
 
Assumption 2 The dynamics of the market factor are given by the following SDE: 
 

*d (t) = [ a (t)]dt dW (t),  0 t Tω ω ω ωω θ − ω +σ ≤ ≤      (2) 
 

where aω, σω are positive constants and θω is a non-negative constant. 
 
Assumption 3 The development of the uncertainty index is given by the following stochastic 
differential equation: 
 

*
u u u udu(t) = [ a u(t)]dt dW (t),  0 t Tθ − +σ ≤ ≤      (3) 

 
where au, σu are positive constants and θu is a non-negative constant. 



 
Assumption 4 The dynamics of the short-rate spread, i.e. the defaultable short rate minus the 
non-defaultable short rate, is given by the following stochastic differential equation: 
 

*
s su s s s sds(t) = [ b u(t) b (t) a s(t)]dt dW (t),  0 t Tωθ + − ω − +σ ≤ ≤      (4) 

 
where as, bsu, bsω, σs are positive constants, and θs is a non-negative constant. 

 
Given Assumptions 1 and 2, the price of a non-defaultable zero-coupon bond is given by the 
following proposition. 
 
 
Proposition 5 Under Assumptions 1 and 2 the time t value of a non-defaultable zero-coupon 
bond with maturity T, P(t,T)=P(r,ω,t,T)  is given by 
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A proof of this statement can be found in Schmid et al. (2008). They also generalize the result 
of Proposition 5 to the pricing of defaultable zero-coupon bonds. We assume a fractional 
recovery of market value. Hence, there is a compensation in terms of equivalent defaultable 
bonds which have not defaulted yet, i.e. the recovery rate is expressed as a fraction of the 
market value of the defaulted bond just prior to default. By equivalent we mean bonds with 
the same maturity, quality and face value. This model was mainly developed by Duffie and 
Singleton (1999) and applied, e.g., by Schönbucher (2000). Then, the following proposition 
holds. 
 
 
Proposition 6 Given the dynamics specified by equations (1)-(4), the value at time 
t<τ=min(T,Td), Pd(t,T)=Pd(r,ω,s,u,t,T), of a defaultable zero-coupon bond with maturity T is 
given by 
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where A(t,T), B(t,T), and E(t,T) are given in Proposition 5, 
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2 The Default Option Pricing Formulas 
 
2.1 Bond Prices under Zero Recovery 
 
Suppose we want to price an option on a defaultable zero-coupon bond, i.e. a so-called credit 
option. If the option is knocked out at default of the zero-coupon bond, the buyer of the option 
receives nothing. Hence, we can interpret the option as a defaultable investment with zero 
recovery. We show that we can determine the price of the option as the expected value of the 
promised cash flow at maturity of the option discounted at risky discount rates. As the 
recovery rate of the option is different from the recovery rate of the reference defaultable 
zero-coupon bond, the risky discount rates are not the same as in the case of the pricing of 
defaultable zero-coupon bonds. Hence, we have to find a short-rate credit spread szero 
describing the credit spread process of an obligor which is equivalent to the issuer of the zero-
coupon bond (especially of the same quality) but with zero recovery rate. Therefore, for 
pricing credit derivatives such as credit options we need the following data for all maturities T 
> 0 : 
• the default-free term structure of bond prices P(t,T), 
• the defaultable term structure of bond prices Pd(t,T), 
• the defaultable term structure of bond prices Pd,zero(t,T), under zero recovery. 
 
Assumption 7 The zero-recovery short-rate spread szero is given by: 
 

zero *(1 z(t)) s (t) s(t), 0 t T ,− ⋅ = ≤ ≤      (5) 
 
where s is the short-rate spread process defined in equation (4). 
 



Proposition 8 Let Y be a FT-measurable random variable with EQ[|Y|]<∞ for some q > 1. 

Under the zero-recovery assumption, i.e. under the assumption that the contingent claim is 
knocked out at default of the reference credit asset, and with the stochastic processes specified 
for r, ω, s, u, and szero, the price process, VL,T, 
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is given by 
 

L,T TV (t) = L(t) V (t)⋅  
 
where the adapted continuous process VT is defined by 
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and VT(t)=0 for t≥T. Hence, if there has been no default until time t, VL,T (t) must equal the 
expected value of riskless cashflows discounted at zero-recovery risky discount rates.  
 
PROOF. See Schmid (2004), p. 230, with Ft substituted by Gt for the result under the enlarged 

filtration G and apply the martingale invariance property to show equation (6). � 

 
Suppose we want to price a contingent claim that promises to pay off Y at maturity time T of 
the contingent claim, if the reference credit asset hasn’t defaulted until then, and zero in case 
of a default. Then, the time t price of the reference credit asset, given there has been no 
default so far, depends on the stochastic processes r, w, s, and u. But in addition, the price of 
the contingent claim depends on szero, because discounting is done with 

T zero

t
exp( r(l) s (l)dl) .− +∫  

 
In the following we assume that z(t) is a known constant, i.e. z(t)=z for all 0≤t≤Td. Then, the 
dynamics of the zero-recovery short-rate spread are given by 
 

zero zero zero zero zero zero
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Now we can calculate the zero-recovery zero-coupon bond prices 
 

d,zero zero zero zero d,zerod,zero A (t ,T) B(t ,T)r(t ) C (t ,T)s (t) D (t ,T)u(t) E (t ,T) (t )P (t,T) = e − − − − ω  



where Ad,zero(t,T), Ed,zero(t,T), Cd,zero(t,T), and Dd,zero(t,T) are given by the corresponding 
formulas for Ad(t,T), Ed(t,T), C(t,T), and D(t,T) with θs, bsu, bsω, and σs substituted by 

zero zero zero zero
s su s s,  b ,  b  and ωθ σ , respectively. 

2.2 Default Put Options 
 
A default (digital) put option is a credit derivative under which one party (the beneficiary) 
pays the other party (the guarantor) a fixed amount (lump-sum fee up-front). This is in 
exchange for the guarantor’s promise to make a fixed or variable payment in the event of 
default in one or more reference assets to cover the full loss in default. As reference 
instruments for default put options we only consider defaultable zero-coupon bonds in this 
section, i.e. there is a payoff that is the difference between the face value and the market value 
(at default) of a reference credit asset (cash settlement). That is, the payoff at the time Td of 
default is 

d d d d dZ(T ) = 1 P (T ,T) = 1 z P (T ,T) .− − ⋅ −  
 
For a default digital put option the payoff is equal to 1 in case of a credit event before or at 
maturity. For the pricing of this derivative, let us first assume that the payoff takes place at 
maturity of the contract. Using equation (6), it is straightforward to show that the time t price 
of the default digital put option is given by 
 

T
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with Pd,zero(t,T) denoting the bond price under zero recovery. 
 
Theorem 9 If the payoff takes place at default of the reference credit asset, the time t price of 
the default digital put option is given by 
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PROOF. See Schmid (2004), p. 243, with Ft substituted by Gt for the result under G and apply 

the martingale invariance property to conclude with equation (7).  � 
 



The following theorem shows how to calculate the expected value in (7). 
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PROOF. See Appendix.  � 
 
Finally, we consider the case of a default put option on a zero-coupon bond which replaces 
the difference to par if default is triggered. 

 
Theorem 11 We assume that the underlying reference asset is a zero-coupon bond with 
maturity T* and that the default put has maturity T. Then, for t<T≤T* and replacement to the 
difference of par, we find the time t price of the default put to be 
 

dp dpp d * d,* *
dT

V (t) = L(t) (V (t) P (t,T ) P (t,T,T )),⋅ − +  

 
where 
 

d,* * * * * * * d,* *d,* * A (t ,T,T ) B(t ,T )r( t) C (t ,T,T )s(t ) D (t ,T,T )u(t) E (t ,T,T ) (t)P (t,T,T ) = e − − − − ω  
 
with 
 

a (T t)* * * *s1C (t,T,T ) = (C(t,T ) ze C(T,T )),
1 z

− −⋅ −
−

     (8) 



a (T t)* * *u

a (T t) a (T t)s u
*

su
s u

1D (t,T,T ) e D(T,T ) D(t,T)
1 z

e eb C(T,T ) ,
a a

− −

− − − −

= +
−

⎡ ⎤−
− ⎢ ⎥

−⎢ ⎥⎣ ⎦

     (9) 

a (T t)d,* * * * * *

a (T t) a (T t )s
*

s
s

1E (t,T,T ) E(t,T ) e E (T,T ) E (t,T)
1 z

e eb C(T,T )
a a

− −ω

− − − −ω

ω
ω

= − −
−

⎛ ⎞−
+ ⎜ ⎟⎜ ⎟−⎝ ⎠

     (10) 

and 
22Td,* * d * 2 * * * 2sr

t

2 2T * * 2 d,* * 2u
t

T * * *
r st

T * * d,* *
ut

A (t,T,T ) A (T,T ) B ( ,T ) (C ( ,T,T )) d
2 2

(D ( ,T,T )) (E ( ,T,T )) d
2 2

( )B( ,T ) C ( ,T,T )d

D ( ,T,T ) E ( ,T,T )d  .

ω

ω

σσ
= + τ + τ τ

σ σ
+ τ + τ τ

− θ τ τ + θ τ τ

− θ τ + θ τ τ

∫

∫

∫
∫

 

 
PROOF. See Appendix.  � 
 

Note, that Pd,*(t,T,T)=Pd,zero(t,T). Also note, that the result of the previous theorem can be 
easily generalized to the case of coupon-paying bonds. 
 
 
2.3. Default Swaps 
 
A default swap is a swap under which one party (the beneficiary) pays the other party (the 
guarantor) regular fees, amounts that are based on a generic interest rate, called the default 
swap spread or the default swap rate. This is in exchange for the guarantor’s promise to make 
a fixed or variable payment in the event of default in one or more reference assets to cover the 
full loss in default. As reference instruments we only consider defaultable (zero-coupon) 
bonds. In practice, default swap contracts differ in their specific default payments. We assume 
replacement of the difference to par which is currently market standard. A default swap on a 
defaultable coupon bond therefore pays off the difference between par and the post-default 
coupon bond price. There is only principal but no coupon protection. The pricing of a default 
swap consists of two problems. At origination there is no exchange of cashflows and we have 
to determine the default swap spread S that makes the market value of the default swap zero. 
After origination, the market value of the default swap will change due to changes in the 
underlying variables. So, given the default swap spread S, we have to determine the current 
market value of the default swap. We assume throughout that the credit swap counterparties 
(beneficiary and guarantor) are default-free. 
 
 
 
 



2.3.1 The underlying reference credit asset is a defaultable zero-coupon bond 
 
We assume that the underlying reference credit asset is a defaultable zero-coupon bond with 
maturity T* and that there has been no credit event until time t. In case of a credit default 
swap with maturity T≤T* there are regular payments S (the credit swap spread) instead of an 
up-front fee Vdp(0). The value of paying Vdp(0) at the origination of the credit-default put 
option must be the same as paying S at some predefined times t≤t1≤…≤tm=T until a default 
happens. Hence, 
 

m
dp d,zero

i
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This is equivalent to a credit swap spread of 
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2.3.2 The underlying reference credit asset is a defaultable coupon bond 
 
In the following we assume that the underlying reference asset is a defaultable coupon bond. 
In addition, we assume that there has been no credit event until time t: 
 
(1) Default put options and replacement of the difference to par: 
 
The reference credit asset is a coupon bond with maturity T* and discrete coupon payments ci 
occurring at dates t≤τ1≤⋅⋅⋅≤τn=T*. Then, the pricing argument for the default put option with 
maturity T≤T* is exactly the same as in the case of the zero-coupon bond, and we get 
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(2) Default swaps: 
 
The credit swap spread can be calculated by the same argument as in the case of zero-coupon 
bonds. Hence, if there are regular payments Sc at some predefined times t≤t1≤⋅⋅⋅≤tm=T until a 
default happens, Sc is given by 
 

dp
c

c m
d,zero

i
i 1

V (0)S =  .
P (0, t )

=
∑

 

 
3 Data and Parameter Estimation 
 
 
3.1 Estimation of the Parameters of the Underlying Processes 
 
We estimate the parameters of the underlying processes from observable time series of 
defaultable and non-defaultable EUR zero rates. All parameters are estimated using Kalman 
Filter methodologies as suggested, e.g., by Schmid (2004). As our main data source we use 
Bloomberg. We use monthly data from March 29, 2002, until January 31, 2007. However, as 
can be seen from Graphs F1 and F2, due to the credit crisis spread levels have exploded and 
GDP growth rates went dramatically down from the middle of 2007. Therefore, we update the 
parameters by including additional data up to 30th June 2007, 31st January 2008, 30th June 
2008, and 30th September 2008. This allows us to investigate the impact of the 2007/2008 
credit crunch on the parameter estimates.  
 
For the calibration of the non-defaultable EUR short rates we use monthly observations of the 
EUR zero rates with maturities between 3 months and 30 years (Bloomberg tickers F96003M 
Index … F960030Y Index). The parameter estimates for the different time horizons can be 
found in Table D1. For the calibration of the credit spread processes, we use monthly 
observations of the EUR AA, and BBB credit spreads (Bloomberg tickers: C6673M Index … 
C66730Y Index and C6733M Index … C67330Y Index, resp., see also Graphs F1 and F2). 
The parameter estimates are summarized in Tables E1 and E2. As can be seen in these tables 
the volatilities of the spreads strictly increased from January 2007 to September 2008. In 
addition to the interest-rate and spread data, we consider quarterly growth rates of the EUR 
GDP rates (Bloomberg ticker EUGNEMU Index – for results see Table C1).  As there is no 
monthly data observable, we generate the missing data using a linear interpolation with a 
three-quarter time lag consistent to the market standard. As can be seen from Table D1 
(parameter brw) and Tables E1 and E2 (parameter bsw) the influence of the GDP decreased 
during the year 2008. This indicates that the behaviour of interest rates and spreads was rather 
influenced by the credit and liquidity effects of the financial crisis than by the general state of 
the economy. In late 2008 the effect of an economic crisis following the credit and liquidity 
crisis becomes visible in increasing values of brw and bsw (rating class AA). For all our 
estimations we use the software packages R and S-PLUS Finmetrics. The results of the 
parameter estimates are summarized in the Appendix. As the process u is unobservable, we 
set bsu=1. More details with respect to parameter estimation techniques as well as in- and out-
of-sample tests of the model can be found in Schmid et al. (2008).  

 



3.2 Calibrating the Model to Market Prices of Credit Default Swaps 
 
Finally we want to calibrate our model to observable market prices (mid closing prices) of 
credit default swaps. To ensure high liquidity of the instruments we pick constituents of the 
iTraxx Europe Series 8 with a maturity of 5 years. As examples we show here CDS contracts 
on the AA and BBB rated issuers BBVA and Deutsche Lufthansa, respectively. The daily 
closing mid spreads of these credit default swaps from 31st January 2007 until 30th September 
2008 can be seen in Figures G3 and G4. The observable spreads at our parameter estimation 
update dates are summarized in Table 3.2.1. 
 
 
Table 3.2.1: Closing Mid CDS Spreads (in BPs) of BBVA and Lufthansa 
       Source UBS Delta and MarkIt 
 
 31-Jan-2007 29-Jun-2007 31-Jan-

2008 
30-Jun-

2008 
30-Sep-2008 

BBVA:  12 74 73.1 130 

Lufthansa: 40.5 47 88 183 168 

 
 
Based on the historical parameter estimations of the underlying processes we estimate the 
recovery rate parameters such that the observed market prices equal the theoretical model 
prices at the 31st January 2007. We assume that these recovery rates are constant through 
time, and the estimates are 80.39% for BBVA and 75.45% for Lufthansa. Note, that these 
estimates are for recovery rates expressed as percentages of market values of bonds prior to 
default. These estimates correspond to much lower recovery values if expressed as a 
percentage of par (which is in line with recovery rates usually assumed in the market). If we 
priced the CDS contracts at our other valuation dates (29-Jun-2007, 31-Jan-2008, 30-Jun-
2008, 30-Sep-2008) based on these recovery rate assumptions as well as the parameter 
estimates in Appendix C-E we would obviously see deviations of the model prices from the 
observable market prices. These deviations go back to the fact that we would use average 
historical data for the estimation of the parameters as well as the very well known CDS basis 
between bond and CDS markets. Among other factors the different liquidity in these two 
markets is one of the most important explanations for the CDS basis. Especially during the 
credit crunch liquidity became a crucial factor. Therefore, in order to explain CDS prices 
during this phase of market dislocation and bond illiquidity, we suggest to adjust the 
parameter θu in the process u. As in a wider interpretation the process u can be understood as 
an uncertainty and illiquidity factor aggregating idiosyncratic default and liquidity risk, it is 
influencing default as well as liquidity components in bond and CDS spreads heavily. Note, 
that this parameter adjustment was not necessary at the beginning of 2007 where we could 
directly imply a meaningful recovery rate estimate from the market CDS spread and our 
historically estimated parameters. In January 2007 the difference in the liquidity of the two 
markets was not as present as from mid 2007 onwards when markets became more difficult. 
The following table shows the values of θu before and after adjustment. Model prices based 
on the adjusted parameters fully match observed market prices. The model clearly indicates 
that the uncertainty and illiquidity in the market, represented by the adjusted parameter θu 
dramatically increased in January 2008 and still is at a much higher level than in June 2007.   
 



Table 3.2.2: Parameter θu before (upper values) and after adjustment 
 

 29-Jun-2007 31-Jan-
2008 

30-Jun-2008 30-Sep-2008 

BBVA: 0.000524 
0.011715 

0.001737 
0.851452 

0.000773 
0.053368 

0.000678 
0.063685 

Lufthansa: 0.002824 
0.049289 

0.001669 
0.118384 

0.003698 
0.076531 

0.002889 
0.081613 

 
 
4 Summary and Conclusion 
 
We developed pricing formulas for credit default options and swaps based on the extended 
Schmid and Zagst defaultable term-structure model. Hereby, we related credit spreads to the 
business cycle and assumed that the spread between a defaultable and a non-defaultable bond 
is considerably driven by an uncertainty index modeling the idiosyncratic default risk (and 
liquidity) of a counterparty. We fitted our model to market prices of credit default swaps and 
calculated recovery rates implied by these market prices. As we apply average historical data 
for estimating the parameters of the underlying processes, we used the uncertainty index 
(parameter θu) to adjust the model to market prices through time. This also adjusts for the 
different liquidity in the bond and CDS markets. Increasing credit risk is indicated by 
increasing volatilities of the spreads as well as an increase in the level of the uncertainty 
index. The model also shows a decreasing influence of the GDP on interest rates and credit 
spreads during the year 2008.  
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APPENDIX 
 
A) PROOF Theorem 10: 
 
For ease of notation we omit the superscript zero in this proof. According to the theorem of 
Feynman-Kac (see, e.g., Duffie (1992), p. 241-244, or Zagst (2002), p. 38-41), v is the 
solution of the following PDE: 
 

2 2 2 2
s ss u uu r rr r r r r

u u u s su s s s

t

10 ( ) ( (t) b a r)
2
( a ) ( a u) ( b u b a s)
(r s)

ω ωω

ω ω ω ω

= σ ν + σ ν +σ ν +σ ν + θ + ω− ν

+ θ − ω ν + θ − ν + θ + − ω− ν
− + ν + ν

 

 
under the condition v(r, s, u, w, T, T) = s. If 
 

d

d dA (t,T) B(t ,T)r E (t ,T) C(t ,T)s D(t,T)u

(r,s, u, , t,T) P (t,T)(F(t,T) G(t,T)r H(t,T)s I(t,T)u J(t,T) )

e
(F(t,T) G(t,T)r H(t,T)s I(t,T)u J(t,T) ),

− − ω− −

ν ω = + + + + ω

=
⋅ + + + + ω

 

then 
 

2 2 2 2 2 d 2 2 2
s u r

2 2 2 d 2
s u r

r r r
d

s su s s

u u

10 ( C D (E ) B )(F Gr Hs Iu J )
2
( CH DI E J BG)
( (t) b a r)( B(F Gr Hs Iu J ) G))
( a )( E (F Gr Hs Iu J ) J)
( b u b a s)( C(F Gr Hs Iu J ) H)
( a u)( D(F G

ω

ω

ω ω

ω

= σ +σ +σ +σ + + + + ω

+ −σ −σ −σ −σ
+ θ + ω− − + + + + ω +
+ θ − ω − + + + + ω +
+ θ + − ω− − + + + + ω +
+ θ − − +

d d
t t t t t

t t t t t

r Hs Iu J ) I)
(r s)(F Gr Hs Iu J )
(F Gr Hs Iu J )(A C s D u E B r)
(F G r H s I u J ) .

+ + + ω +
− + + + + + ω
+ + + + + ω − − − ω−
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This reduces to 
 

2 2 2 d 2
s u r

r s u t r t

t r s s t

u t su

0 CH DI E J BG
G (t) J H I F r( a G G )

( a J J b G b H) s( a H H )
u( a I I b H)

ω

ω

ω ω

= −σ −σ −σ −σ
+ θ + θ + θ + θ + + − +
+ω − + + − + − +
+ − + +

 

 
under the boundary conditions 
 

G(T,T) = 0,  F(T,T) = 0,  H(T,T) = 1,  I(T,T) = 0,  J(T,T) = 0 .  
 
Therefore, we have to solve the following system of linear equations: 
 

t r t r s t s t u su
2 2 2 d 2

t s u r r s u

G a G, J = a J b G b H, H = a H, I = a I b H,
F CH DI E J BG G (t) J H I .

ω ω

ω ω

= − + −
= σ +σ +σ +σ − θ − θ − θ − θ

 

 
Applying the transformation τ=T-t we get: 
 

a (T t)s

a (T t ) a (T t)sT ta (T t ) a l a ls
s s0
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su su0
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T 2 2
s ut
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e eJ(t,T) e e b e dl = b
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e eI(t,T) e e b e dl = b
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− −
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−
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−

−
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−
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∫

∫

∫
2 d 2
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Using 
 

d
t t tC = H, D = I, (E E) = J− − − −  

 
we finally get 
 

 
2 2 2 2 d
s u

T 2 d
s u t

1F(t,T) ( C(t,T) D(t,T) ) (E E)(t,T)
2

C(t,T) D(t,T) E (l,T)J(l,T)dl .

ω

ω
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B) PROOF Theorem 11: 
 
Let Z describe the payoff of the underlying bond upon default. Then, we get: 
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By applying Proposition 8 we get 
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which is equivalent to 
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To calculate Pd,* we assume that there exists a solution of the type 
 

d,* * * * * * * * d,* *d,* * A (t ,T,T ) B (t ,T,T )r( t ) C (t ,T,T )s(t ) D (t ,T,T )u(t ) E (t ,T,T ) (t )P (t,T,T ) = e − − − − ω  
 
and apply the theorem of Feynman-Kac to derive a system of corresponding linear equations: 
 

* * * *
r t

* * * *
s t

* * * * * *
u su t

d,* * * * * * d,* *
r s t

a B (t,T,T ) B (t,T,T ) 1 0
1a C (t,T,T ) C (t,T,T ) 0

1 z
a D (t,T,T ) b C (t,T,T ) D (t,T,T ) 0
a E (t,T,T ) b B (t,T,T ) b C (t,T,T ) E (t,T,T ) 0ω ω ω

− − =

− − =
−

− − =
− + − =

 

 
and 
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with boundary conditions 
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• Solving for B*: 
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• Solving for C*: Let 
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Using the theorem of Feynman-Kac, we can easily see from Proposition 6 that 
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In addition,  
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• Solving for D*: Using Equation (9): 
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Again, using the theorem of Feynman-Kac, it can be easily seen from Proposition 6 that 
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In addition, 
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• Solving for Ed,*: Using Equation (10): 
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Using the theorem om Feynman-Kac, we know from Propositions 5 and 6 that 
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which is equivalent to 
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a E (t,T,T ) E (t,T,T ) b B(t,T ) b C (t,T,T )
b B (t,T,T ) b C (t,T,T ) .

ω ω ω

ω ω

− = −
= −

 

 
 
 
 



In addition, 
 

d,* * * * * *

* * * d *

1E (T,T,T ) E(T,T ) E (T,T ) E (T,T)
1 z

E(T,T ) E (T,T ) = E (T,T ) .

= − −
−

= −
 

 
• Solving for Ad,*: 
 

d,* * d,* * d,* * d

T *
tt

A (t,T,T ) A (T,T,T ) A (t,T,T ) A (T,T)

A ( ,T,T )d

− = −

= − τ τ∫
 

 
and the solution follows from simple integration.  � 
 
 
 
 
 



 
C) Tables of Parameter Estimates – GDP Rates 
 
Table C.1: EUR GDP Parameters 
 

 31-Jan-2007 29-Jun-2007 31-Jan-2008 30-Jun-2008 30-Sep-2008 

ωa  0.9095  0.7609 0.9885 0.8345 0.8122 

ωθ  0.003313   0.003367 0.003487 0.0036 0.003989 

ωσ  0.003657  0.003596 0.003533 0.00354 0.003851 

|Log-
Likelihood| 

518.8  547.8 588.1 615.5 621.6 

 
 
D) Tables of Parameter Estimates – Non-Defaultable Short Rate Parameters 

 
Table D.1: EUR Short Rate Parameters 
 

 31-Jan-2007 29-Jun-2007 31-Jan-2008 30-Jun-2008 30-Sep-2008 

ra  0.4431  0.2463 0.2487 0.4102 0.3166 

ωrb  0.1559  0.1275 0.1044 0.05151 0.1013 

rσ  0.01005  0.007876 0.007944 0.009699 0.008729 

|Log-
Likelihood| 

3286  2721 2896 3832 3923 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
E) Tables of Parameter Estimates – Short Rate Credit Spreads 



 
Table E.1: EUR AA Credit Spread Parameters 
 

 31-Jan-2007 29-Jun-2007 31-Jan-2008 30-Jun-2008 30-Sep-2008 

sa  0.8312  0.3287 0.4251 0.2985 0.4933 

sθ  0.001252  0.001277 0.0001275 1.465e-005 0.00241 

sσ  0.0008983  0.0008872 0.00151 0.002337 0.003182 

ωsb  0.0004295  0.02813 0.01001 0.004741 0.1041 

sub  1 1 1 1 1 

ua  0.3668  0.9653 0.0593 0.4404 0.5592 

uθ  0.0002971  0.0005242 0.001737 0.0007725 0.0006778 

uσ  0.000469  0.001533 0.02112 0.005093 0.008816 

|Log-
Likelihood| 

1887    2097 1591 2167 2000 

 
Table E.2: EUR BBB Credit Spread Parameter 
 

 31-Jan-2007 29-Jun-2007 31-Jan-2008 30-Jun-2008 30-Sep-2008 

sa  0.6496  0.6436 0.763 0.03331 0.4193 

sθ  0.004823  0.001222 0.005086 0.000454 5.349e-005 

sσ  0.001779  0.00185 0.002421 0.002973 0.004298 

ωsb  0.2183  0.1203 0.4374 0.2906 0.09913 

sub  1 1 1 1 1 

ua  0.3245  0.9604 0.3051 0.9355 0.2438 

uθ  0.0001652  0.002824 0.001669 0.003698 0.002889 

uσ  0.006776  0.01073 0.01856 0.01037 0.01174 

|Log-
Likelihood| 

973.7     1494 1424 1162 1539 

F) Time Series of Growth Rates of EUR GDP vs AA and BBB Credit Spreads 



 
Figure F.1: Growth Rates EUR GDP and EUR AA Credit Spreads, Source: Bloomberg 
 

 
 
 
Figure F.2: Growth Rates EUR GDP and EUR BBB Credit Spreads: Source Bloomberg 
 

 
G) Asset Details and Spread Histories of CDS contracts 



 
Figure G.1: Asset Details of BBVA: Source UBS Delta 

 
 
Figure G.2: Asset Details of Deutsche Lufthansa: Source UBS Delta 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure G.3: BBVA 5 Year CDS Spreads: Source UBS Delta, MarkIt 



 

 
Figure G.4: Lufthansa 5 Year CDS Spreads: Source UBS Delta, MarkIt 
 
 

 
 


