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Risk Management

Rudi Zagst, RiskLab GmbH, Arabellastr. 4, D-81925 Munich

Scenario analysis is an essential tool for ¯nancial risk management and asset allo-
cation. It can give an important a priori information to a risk or portfolio manager
and helps to control the e®ect of price changes to a portfolio, especially those of
potential market crashes. This article deals with the problem of providing a set of
consistent and reliable scenarios which may also consider market forecasts given
by a research department or other market specialists. Bond and share prices are
described by a multi-factor stochastic market model. The model is ¯tted and statisti-
cally examined using empirical data of the German bond market represented by the
yields of the German Pfandbrief index (PEX) with maturities from one to ten years
and the stock markets represented by the Dow Jones European stock market index
(DJ Euro Stoxx 50) as well as the MSCI World Excluding EMU index (MSCI World
ex EMU). A case study shows how this concept can be applied to risk management
problems.

JEL classi¯cation index: C13, C32, E43, E47, G11
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1 Introduction

One of the most challenging problems in managing the risk of a portfolio or trading
book is to be adequately prepared to potential future market changes. History may
be one advisor for the future but de¯nitely not the only and sometimes also not
the best one. Nevertheless, empirical price changes can give an important insight
into the joint behaviour of di®erent risk factors under normal market conditions.
Stochastic models may then be applied to describe the movement of future mar-
ket prices and used to generate a corresponding set of price scenarios. Event or
crash scenarios could be added to consider non-normal or chaotic market move-
ments. However, if these scenarios are a good representation of the possible future
price changes, the risk manager or trader may use this information to calculate
risk numbers like expected return, standard deviation or shortfall probability, i.e.
the probability that the return falls below a given benchmark. According to these
numbers a portfolio manager may decide on the detailed structure of his portfolio.
In this article we will use a multi-factor ¯nancial market model to describe the joint
movement of bond and share prices. The model is described and theoretically solved
in section 2. The bond market we consider is represented by the German Pfandbrief
index (PEX) with maturities from one to ten years as it is published by the data
provider Bloomberg on behalf of the Association of German Mortgage Banks and
the Association of Public Banks. The stock market is described using the Dow Jones
Euro Stoxx 50 (DJ Euro Stoxx 50) index which is a capitalization-weighted index
of ¯fty European blue-chip stocks from those countries participating in the Euro-
pean and Monetary Union (EMU) and the MSCI World Excluding EMU (MSCI
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World ex EMU) index which is a capitalization-weighted index monitoring the per-
formance of stocks from around the world, excluding the countries that make up
the EMU. In section 3 we use empirical price information to ¯t the ¯nancial market
model to historical market prices and correlations. Based on speci¯c (partial) mar-
ket forecasts we develop a method which allows for the generation of a complete
set of market scenarios consistent to these forecasts in section 4. In section 5 we
use the generated scenario sets to calculate risk numbers according to unconditional
or forecasted market movements. The results are applied to decide on the specī c
structure or structural changes of a portfolio or trading book.

2 The Model

In this section we develop and solve a multi-factor model to describe the joint
evolution of share and bond prices. We will use a stock market index to model the
evolution of the corresponding stock market. Individual share price behaviour may
then be derived using the well-known capital asset pricing model or related methods
(see, e.g. Elton and Gruber (1991) for more details). While the famous model of
Black and Scholes (1973) is most widely accepted to be the standard model for
describing stock price behaviour there are quite a number of stochastic models to
describe a bond market. Usually these models use the short rate or the forward
short rates, i.e. interest rates of an in¯nitesimal time to maturity measured at time
t for time t (short rate) or for a future point in time (forward short rate). Among
the most famous short rate models are those of Vasicek (1977), Cox et al. (1985),
or Hull and White (1990). One of the most general frameworks is the forward short
rate model introduced by Heath et al. (1992). In recent years a new class of market
models was introduced by Brace et al. (1997) and Miltersen et al. (1997), the so-
called LIBOR market models, as well as by Jamshidian (1998), the so-called swap
market model. They describe the behaviour of market rates rather than that of
the short or forward short rate. For an overview on interest rate models see, e.g.
Hull (2000), Musiela and Rutkowski (1997), or Zagst (2002). In this paper we will
use a Vasicek process to describe the PEX rates of di®erent maturities which are
published by Bloomberg each day. In this sense the model can be considered to be
a new representative of the class of market models.

Following the famous model of Black and Scholes (1973), we describe the behaviour
of a stock market index Sk, k 2 f1; :::;NSg, by the stochastic di®erential equation

dSk(t) = Sk(t) ¢ (¹kdt + ¾kdfWk(t)); t 2 [0; T ] ;

with ¹k 2 IR denoting the drift rate, ¾k > 0 the volatility of the stock mar-
ket index, and with correlated one-dimensional Wiener processes fWk. Using Itô's
lemma (see, e.g., Itô (1951)) we can easily conclude that the corresponding process
(ln (Sk (t)))t2[0;T] follows the stochastic di®erential equation

d ln (Sk (t)) = µkdt +¾kdfWk(t)

with µk := ¹k ¡ 1
2 ¢¾2

k . Typical for this model is an exponential deterministic growth
of the stock index plus random noise (see ¯gure 1 for an empirical example).

On the other hand, interest rates or yields can usually be observed to drift around
a long-term mean or mean reversion level due to economic cycles (see ¯gure 2 for
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Figure 1: History of the PEXP, the performance index corresponding to the PEX,
the DJ Euro Stoxx 50, and the MSCI World ex EMU with values normed to 1 at
January 1992

0

2

4

6

8

10

12

Jan
 92

Ap
r 92 Jul 

92
Okt 9

2
Jan

 93
Ap

r 9
3

Ju
l 93

Okt 9
3

Jan
 94

Ap
r 94 Jul 

94
Okt 9

4
Jan

 95
Ap

r 95 Jul 
95

Okt 9
5
Jan

 96
Ap

r 96 Ju
l 96

Okt 9
6

Jan
 97

Ap
r 97 Jul 

97
Okt 9

7
Jan

 98
Ap

r 98 Jul 
98

Okt 9
8
Jan

 99
Ap

r 99 Ju
l 99

Okt 9
9
Jan

 00
Ap

r 0
0

Jul 
00

Okt 0
0

Jan
 01

Time

R
at

e 
(in

 %
)

PEX 1 PEX 2 PEX 3 PEX 4 PEX 5 PEX 6 PEX 7 PEX 8 PEX 9 PEX 10

Figure 2: History of the PEX rates for maturities from 1 to 10 years
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an empirical example). Using the model of Vasicek (1977) this behaviour can be
described by the stochastic di®erential equation

dRi (t) = (µi ¡ ai ¢ Ri (t))dt + ¾idfWi(t); t 2 [0; T ] ; i 2 f1; :::; NRg

with Ri denoting the PEX yield-to-maturity (PEX rate) for a ¯xed time to maturity
Ti, ai > 0 the mean reversion rate, ¾i > 0 the volatility, and with correlated one-
dimensional Wiener processes fWi. Furthermore, µi

ai
with µi ¸ 0 is the mean reversion

level of Ri, i 2 f1; :::;NRg.

Using the previous models we describe a universe of di®erent yields-to-maturity
(Yi (t) := Ri (t), i = 1; :::;NR) as well as the logarithm of di®erent stock market
indices (Yi (t) := ln (Si (t)), i = NR + 1; :::;N := NR + NS) by the stochastic
di®erential equations

dYi (t) = (µi ¡ ai ¢ Yi (t))dt + ¾idfWi(t); i = 1; :::;N; t 2 [0; T ] ; (1)

where we assume that ai = 0 for all stock market indices and that the Wiener
processes fWi, i = 1; :::; N, are correlated at a constant correlation rate ½ik de¯ned
by

Cov
h
dfWi(t); dfWk(t)

i
= ½ikdt, i; k 2 f1; :::; Ng .

To solve this N¡dimensional continuous time model, we orthogonalize the Wiener
processes fW1; :::; fWN using the independent Wiener processes W1; :::;WN with
W1 := fW1 and

¾idfWi(t) =
NX

j=1

¾ijdWj(t), t 2 [0; T ] ,

with ¾ij ¸ 0 for all i; j 2 f1; :::; Ng and ¾ij = 0 if i < j, i.e.

dYi(t) = (µi ¡ ai ¢ Yi(t))dt +
NX

j=1

¾ijdWj(t), i 2 f1; :::;Ng .

This can be written as

dY (t) = [µ +AY (t)]dt +¾dW (t) (2)

with
µ = (µ1; :::; µN )0 , ¾ = (¾ij)i=1;:::;N

j=1;:::;N

and

A =

0
BBBBBB@

¡a1 0 ¢ ¢ ¢ 0
0
¢
¢
¢

¢
¢

¢

¢
¢
¢
0

0 ¢ ¢ ¢ 0 ¡aN

1
CCCCCCA

:

We can then state the following theorem which is proved in the appendix.

Theorem 2.1 The solution to the stochastic di®erential equation (2) is given by

Yi (t) = Yi (0) ¢ e¡ai¢t + µi ¢ h (ai; t) +
NX

j=1

¾ij ¢ e¡ai¢t ¢
Z t

0
eai ¢sdWj (s)



5

with

h (ai; t) =

(
1¡e¡ai¢t

ai
, if ai > 0

t , if ai = 0

for all t 2 [0; T ], i 2 f1; :::;Ng. Especially, Yi (t) is normally distributed for all
t 2 (0; T ], i 2 f1; :::; Ng and the expected values and covariances of Yi (t) and Yk (t)
for all t 2 (0; T ], i; k 2 f1; :::;Ng are given by

E [Yi (t)] = Yi (0) ¢ e¡ai¢t + µi ¢ h (ai; t)

and

Cov [Yi (t) ; Yk (t)] = h (ai + ak; t) ¢
NX

j=1

¾kj ¢ ¾lj.

It should be noted that our assumption of µ;A, and ¾ to be constant over time
may be relaxed to nonrandom, measurable, and locally bounded matrices (see, e.g.,
Karatzas and Shreve (1991), p. 354-355, for more details). This would allow for the
modelling of deterministic dynamic drift, volatility, and mean reversion parameters
by still keeping the normal distribution property. However, the resulting functional
solution for Y as well as the following parameter estimation may become fairly
complicated.

3 Parameter Estimation

Having de¯ned and solved the N¡dimensional stochastic process used to describe
the evolution of the bond and stock markets we now turn to the problem of estimat-
ing the parameters of this process. To do so, we apply a two-stage procedure. First,
we consider the discrete time version of equation (1). Therefore, let ¢t > 0 with
T = m ¢ ¢t, m 2 IN denote the time distance between two observations of Yi and
e³ (t) =

³
e³1 (t) ; :::; e³N (t)

0́
with e³i (t) := fWi(t +¢t)¡fWi(t), t 2 f0; ¢t; :::; T ¡¢tg.

Then, the discrete time version of equation (1) is given by

Yi(t + ¢t) ¡Yi(t) = (µi ¡ ai ¢ Yi(t)) ¢ ¢t +
p

¢t ¢ ¾i ¢ e³i (t)

for i 2 f1; :::; Ng ; t 2 f0; ¢t; :::; T ¡¢tg. If we de¯ne

Ri (t +¢t) = Ri (t; t + ¢t) := ln
µ

Si (t + ¢t)
Si (t)

¶

for each stock market index i 2 f1; :::;Ng, with Ri (0) := 0, this is equivalent to

Ri(t + ¢t) = µi ¢ ¢t +(1 ¡eai ¢ ¢t) ¢ Ri(t) +
p

¢t ¢ Xi (t) (3)

with Xi (t) := ¾i ¢ e³i (t), t 2 f0;¢t; :::; T ¡¢tg, and

eai :=
½

ai , if i denotes a PEX rate
1
¢t , if i denotes a stock market index.

Using a monthly time series of Bloomberg data for the PEX rates with maturities
from one to ten years (Y1; :::; Y10), the DJ Euro Stoxx 50 index (Y11, in Euro), and
the MSCI World ex EMU index (Y12, in Euro) starting from January 31, 1992 to
February 28, 2001 (i.e. a sample of size m = 109), a least square optimization gives
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i n Parameter µi (%) ai ¾i (%)
1 1.4251 0.3956 0.7470
2 1.6836 0.4181 0.8624
3 1.7611 0.4064 0.8511
4 1.8363 0.4007 0.8202
5 1.8039 0.3783 0.7878
6 1.7250 0.3510 0.7502
7 1.6270 0.3238 0.7110
8 1.5239 0.2989 0.6697
9 1.4358 0.2787 0.6375
10 1.3831 0.2662 0.6160
11 18.5223 0 17.1986
12 11.4838 0 16.6912

Table 1: Parameter Estimations

us the parameter estimations1 as stated in table 1. The resulting parameters ¹i for
the stock processes are ¹11 = µ11 + 1

2 ¢ ¾2
11 = 20:0012% and ¹12 = 12:8768%.

For an empirical evaluation of the model we use the sample residuals

xik =
Ri(k ¢ ¢t) ¡ µi ¢ ¢t ¡ (1 ¡ eai ¢ ¢t) ¢ Ri((k ¡ 1) ¢ ¢t)p

¢t
, k = 1; :::;m ¢ ¢t,

which have, by construction, a sample variance of

s2
i =

1
m ¡ 1

¢
mX

k=1

(xik ¡ xi)
2 = ¾2

i

with xi = 1
m ¢ Pm

k=1 xik, i = 1; :::;N . One method that has been suggested for
testing whether the distribution underlying a sample of m elements is standard
normal, commonly known as the Jarque-Bera test, uses the skewness and excess
kurtosis of the standardized residuals and refers the so-called Wald statistic2

Ti;nd = m ¢
µ

skewness2
i

6
+

excess kurtosis2
i

24

¶
, i = 1; :::;N, (4)

to the chi-squared distribution with two degrees of freedom (see, e.g., Greene (1993),
p. 310, for more details or Harvey (1989), p. 260, for a similar test). The critical
values for a 5%¡ and 1%¡signī cance level are 5:9915 and 9:210, respectively. The
null hypothesis is rejected if Ti;nd is greater than the corresponding critical value.

1Hereby, given µi and eai, the volatilities ¾i are estimated by the sample variance of the corre-
sponding residuals Xi (t), t 2 f0;¢t; :::; T ¡ ¢tg, i 2 f1; :::; Ng.

2For a random variable X with ¯nite k¡th central moment mk = E
£
(X ¡ E [X])k

¤
, k 2 IN ,

the skewness is given by
skewness =

m3

(
p
m2)3

and the excess kurtosis by
excess kurtosis =

m4

(
p
m2)4

¡ 3.

If the probability density function (pdf) of X is symmetric, the skewness will be equal to 0. If X
is standard normally distributed, the excess kurtosis will be equal to 0. If the excess kurtosis of
X is positive, the pdf of X will have more mass in the tails than a Gaussian pdf with the same
variance.
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i skew: ex: kurt: Ti;nd T 1
i;ac T 2

i;ac

1 ¡0:4452 1:2490 10:6848 3:7886 0:5445
2 ¡0:2256 0:6705 2:9667 3:8915 0:4779
3 0:0102 ¡0:2254 0:2326 3:9611 1:0040
4 0:2111 ¡0:4563 1:7548 3:8777 1:0654
5 0:3012 ¡0:4232 2:4611 3:5967 1:1808
6 0:2972 ¡0:5233 2:8484 3:5918 1:2645
7 0:2987 ¡0:5474 2:9819 3:3015 1:4457
8 0:3373 ¡0:5141 3:2672 3:0984 1:5350
9 0:3889 ¡0:4690 3:7466 2:5686 1:4202
10 0:3507 ¡0:4595 3:1930 2:5077 1:3748
11 ¡0:5585 0:7053 7:9266 0:2594 0:7984
12 ¡0:5579 0:1209 5:7205 0:6152 0:0167

Table 2: Statistics for testing the quality of the model

To test for autocorrelations of the residuals e³i, i 2 f1; :::;Ng, we apply the test
statistic

T l
i;ac =

Ri;l ¢ p
m ¡ 2q

1 ¡R2
i;l

, i = 1; :::;N ,

to the sample residuals zik := xik
¾i

, k = 1; :::; m, with Ri;l denoting the sample
autocorrelation coe±cient3 of the corresponding residuals for a lag l 2 f1; :::; Lg,
L < m. Larsen and Morris (2001), p. 626, show that under the assumption (null
hypothesis) that the residuals are uncorrelated, the test statistic follows a Student-
t distribution with m ¡ 2 degrees of freedom. The critical values for a 5%¡ and
1%¡signī cance level are 1:9824 and 2:6226 (with m = 109), respectively. The null
hypothesis is rejected if

¯̄
T l

i;ac
¯̄
is greater than the corresponding critical value.

According to table 2 we get the following results:

1. The normal distribution hypothesis is only rejected on a 5%¡signī cance level
for i 2 f1;11g and on a 1%¡signi¯cance level only for i = 1.

2. The zero autocorrelation hypothesis for lag 1 is rejected on a 5%¡signi¯cance
level for i 2 f1; :::;10g and on a 1%¡signi¯cance level for i 2 f1; :::; 8g.

3. The zero autocorrelation hypothesis for lag 2 is neither rejected on a 5%¡
signi¯cance level nor on a 1%¡signi¯cance level for all i 2 f1; :::; 12g.

3The sample autocorrelation coe±cient Rl for a lag l 2 f0; 1; :::; Lg, L < m, of a sample
(zk)k=1;:::;m is de¯ned by

Rl =
m ¡ 1
m ¡ 1¡ l ¢

mX

k=1+l

(zk ¡ z) ¢ (zk¡l ¡ z)

mX

k=1

(zk ¡ z)2

with

z =
1
m
¢
mX

k=1

zk .
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With respect to point 1 we may decide to neglect the one year maturity within our
model. Furthermore, we may want to test an ARMA model because of the results
in point 2 (see, e.g., Greene (1993), p. 550-552, for more details). However, since we
would also like to use the model for pricing stock and interest rate derivatives, there
is a trade-o® between the best possible empirical and a good pricing model. With
respect to both needs we consider the results to be su±ciently good to support the
model we have chosen.

In the second step we ¯t the model to empirical correlation data. To do this, we use
the discrete time version of equation (2) for i 2 f1; :::;Ng ; t 2 [0;¢t; :::; T ¡¢t] ;
which is given by

Ri(t +¢t) = µi ¢ ¢t +(1 ¡eai ¢ ¢t) ¢ Ri(t) +
p

¢t ¢
NX

j=1

¾ij ³j (t) (5)

where ³ (t) = (³1 (t) ; :::; ³N (t))0 is a vector of independent standard normally dis-
tributed random variables4. Hence, for all i 2 f1; :::;Ng ; t 2 [0;¢t; :::; T ¡ ¢t] ; we
have

Xi (t) =
NX

j=1

¾ij ³j (t) .

On the other hand, for i; k 2 f1; :::;Ng, we get

Cov [Xi (t) ; Xk (t)] = Cov

2
4

NX

j=1

¾ij ³j (t) ;
NX

l=1

¾kl ³l (t)

3
5

=
NX

j=1

NX

l=1

¾ij ¢ ¾kl ¢ Cov [ ³j (t) ; ³l (t)]

=
NX

j=1

¾ij ¢ ¾kj =
minfi;kgX

j=1

¾ij ¢ ¾kj:

Especially,

¾2
i = V ar [Xi (t)] = Cov [Xi (t) ;Xi (t)] =

iX

j=1

¾2
ij > 0:

If we set

®ij :=
¾ij

¾i
;1 · j · i · N; (6)

we get

Cor [Xi (t) ;Xk (t)] =
Cov [Xi (t) ;Xk (t)]

¾i ¢ ¾k
=

minfi;kgX

j=1

®ij ¢ ®kj

with
iX

j=1

®2
ij = 1, i.e. ®2

ii = 1 ¡
i¡1X

j=1

®2
ij.

Hence, ®11 = 1 and

®i1 =
Cor [Xi (t) ;X1 (t)]

®11
= Cor [Xi (t) ;X1 (t)] , i = 2; :::; N, (7)

4We hereby assume that ³i (t) and ³i (t0) are uncorrelated for all t; t0 2 [0; T ] with t 6= t0 .
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as well as

®22 =
q

1 ¡ ®2
21 =

q
1 ¡ (Cor [X2 (t) ;X1 (t)])2. (8)

Let i ¡ 1 2 f2; :::;N ¡ 1g and suppose that we did already calculate all
®lj, l = 1; :::; i ¡ 1, j = 1; :::; l. Then, for k = 2; :::; i ¡ 1, we get

Cor [Xi (t) ; Xk (t)] =
kX

j=1

®ij ¢ ®kj

or equivalently

®ik =
Cor [Xi (t) ;Xk (t)] ¡

k¡1P
j=1

®ij ¢ ®kj

®kk
(9)

and

®ii =

vuut1 ¡
i¡1X

j=1

®2
ij. (10)

Using equation (6) we can easily derive the corresponding values for ¾ik. For the
above time series we get the following correlation matrix
(Cor [Xi (t) ;Xk (t)])i;k=1;:::;N (in %)
0
BBBBBBBBBBBBBBBBBB@

100 92 86 81 77 73 68 65 61 59 ¡18 ¡18
92 100 98 94 91 88 83 79 76 75 ¡19 ¡18
86 98 100 99 96 94 91 87 84 83 ¡22 ¡21
81 94 99 100 99 98 95 93 90 89 ¡24 ¡23
77 91 96 99 100 99 97 95 93 92 ¡27 ¡25
73 88 94 98 99 100 99 98 96 95 ¡27 ¡25
68 83 91 95 97 99 100 99 98 97 ¡29 ¡26
65 79 87 93 95 98 99 100 99 99 ¡28 ¡25
61 76 84 90 93 96 98 99 100 100 ¡29 ¡27
59 75 83 89 92 95 97 99 100 100 ¡28 ¡27

¡18 ¡19 ¡22 ¡24 ¡27 ¡27 ¡29 ¡28 ¡29 ¡28 100 76
¡18 ¡18 ¡21 ¡23 ¡25 ¡25 ¡26 ¡25 ¡27 ¡27 76 100

1
CCCCCCCCCCCCCCCCCCA

:

Using equations (7) ¡ (10) we iteratively derive the matrix (in %)

® =

0
BBBBBBBBBBBBBBBBBB@

100 0 0 0 0 0 0 0 0 0 0 0
92 38 0 0 0 0 0 0 0 0 0 0
86 47 19 0 0 0 0 0 0 0 0 0
81 51 25 15 0 0 0 0 0 0 0 0
77 53 27 21 12 0 0 0 0 0 0 0
73 53 32 25 11 12 0 0 0 0 0 0
68 53 37 27 13 15 11 0 0 0 0 0
65 51 38 32 13 17 13 11 0 0 0 0
61 52 40 31 15 19 15 13 11 0 0 0
59 52 39 31 16 20 15 15 11 8 0 0

¡18 ¡7 ¡19 ¡14 ¡13 1 ¡10 15 ¡12 ¡5 92 0
¡18 ¡5 ¡18 ¡8 ¡19 2 ¡2 8 ¡14 ¡7 67 64

1
CCCCCCCCCCCCCCCCCCA

.
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The residuals ³i (t), i 2 f1; :::;Ng can also be derived by an iterative procedure.
Given Xi (t) and ³j (t), j = 1; :::; i ¡ 1, we directly get

³i (t) =
Xi (t) ¡

i¡1P
j=1

¾ij ³j (t)

¾ii
, i = 2; :::;N ,

with ³1 (t) = X1(t)
¾11

= X1(t)
¾1

. Note that we can directly conclude that ³ (t) is normally
distributed as soon as X (t) is, t 2 [0;¢t; :::; T ¡ ¢t].

4 Conditional Scenarios

In this section we deal with the problem that a trader or risk manager does not
want to rely on empirical information only. Research departments do make market
forecasts mainly for stock market returns within a given period or interest rates
for a ¯xed time-to-maturity and a specī c point in time. Most of the time they
hereby assume that the correlation and volatility structure is constant over time5.
Consistent to such (partial) market forecasts we want to generate a complete set of
market scenarios to describe the evolution of a trading book or portfolio. Therefore,
let for 0 · t0 · t · T be

Ri (t0; t) =

(
Ri (t) = Yi (t) , if i denotes a PEX rate
ln

³
Si(t)
Si(t0)

´
= Yi (t) ¡Yi (t0) , else.

Assumption 4.1 A forecast Ri (t0; t1) for Ri (t0; t1), i 2 f1; :::;Ng, and time in-
terval [t0; t1], t0; t1 2 f0;¢t; :::; m ¢ ¢tg, de¯nes the (conditional) stochastic process
(Rc

i (t0; t))t2[t0;T ] given by

Rc
i (t0; t) =

½
Ri(t0; t) + t¡t0

t1¡t0
¢ (Ri (t0; t1) ¡Ri(t0; t1)) , t 2 [t0; t1]

Ri(t0; t) + Ri(t0; t1) ¡ Ri(t0; t1) , t 2 [t1; T ] .

Now, let t 2 [t0; t1 ¡¢t] \ f0; ¢t; :::;m ¢ ¢tg and t0; t1 2 f0; ¢t; :::;m ¢ ¢tg. Then,
if i denotes a forecasted stock market index and Sc

i the corresponding conditional
stock index process,

¢ ln (Sc
i (t)) = ln (Sc

i (t +¢t)) ¡ ln (Sc
i (t))

= ln
µ

Sc
i (t + ¢t)
Si (t0)

¶
¡ ln

µ
Sc

i (t)
Si (t0)

¶

= Rc
i (t0; t + ¢t) ¡Rc

i (t0; t)

= Ri(t0; t +¢t) ¡ Ri(t0; t) +
¢t

t1 ¡ t0
¢ (Ri (t0; t1) ¡Ri(t0; t1))

= ¢ln (Si (t)) +
¢t

t1 ¡ t0
¢ (Ri (t0; t1) ¡ Ri(t0; t1)).

On the other hand, if i denotes a forecasted PEX rate, then

Rc
i(t) = Ri(t) +

t ¡ t0
t1 ¡ t0

¢ (Ri (t1) ¡Ri(t1))

5As an extension we could allow for changing volatilities and correlations over time and in-
clude forecasts on these variables into the model. However, this may complicate the parameter
estimation and signi¯cantly increase the simulation time of a portfolio. Another possibility is to
simply add further full market event or crash scenarios for considering non-normal or chaotic mar-
ket movements with changing volatility or correlation structure and test the portfolio behaviour
under these scenarios.
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and thus

¢Rc
i (t) = Rc

i (t + ¢t) ¡Rc
i (t)

= Ri(t +¢t) ¡ Ri(t) +
¢t

t1 ¡ t0
¢ (Ri (t1) ¡Ri(t1)).

Consequently, for each forecasted Yi, i 2 f1; :::;Ng, t 2 [t0; t1 ¡ ¢t]\f0;¢t; :::;m ¢ ¢tg
and t0; t1 2 f0; ¢t; :::;m ¢ ¢tg, we have

¢Y c
i (t) = ¢Yi(t) +

¢t
t1 ¡ t0

¢ (Ri (t0; t1) ¡Ri(t0; t1)).

We can therefore state the following lemma.

Lemma 4.2 A forecast Ri (t0; t1) for Ri (t0; t1), i 2 f1; :::; Ng, and time interval
[t0; t1] with t0; t1 2 f0;¢t; :::; m ¢ ¢tg, de¯nes the discrete (conditional) stochastic
process (Y c

i (t))t2f0;¢t;:::;m¢¢tg given by Y c
i (0) = Yi (0) and

¢Y c
i (t) =

½
¢Yi(t) , if t 2 [0; t0) [ [t1; T )

¢Yi(t) + ¢t
t1¡t0 ¢ (Ri (t0; t1) ¡ Ri(t0; t1)) , if t 2 [t0; t1) .

Additionally, we want to ensure that for each t 2 [t0; t1 ¡ ¢t] \f0;¢t; :::; m ¢ ¢tg

¢Y c
i (t) = (µi ¡ ai ¢ Y c

i (t)) ¢ ¢t +
p

¢t ¢ Xc
i (t)

=
µ

µi ¡ ai ¢
·
Yi(t) +

t ¡ t0
t1 ¡ t0

¢ (Ri (t0; t1) ¡ Ri(t0; t1))
¸¶

¢ ¢t

+
p

¢t ¢ Xc
i (t)

with Xc
i (t) being the conditional random variable corresponding to Xi (t) and the

forecast Ri (t0; t1), i 2 f1; :::;Ng. Using lemma 4.2 we thus get

¢Y c
i (t) = ¢Yi(t) +

¢t
t1 ¡ t0

¢ (Ri (t0; t1) ¡ Ri(t0; t1))

= (µi ¡ ai ¢ Yi(t)) ¢ ¢t +
p

¢t ¢ Xi (t) +
¢t

t1 ¡ t0
¢ (Ri (t0; t1) ¡ Ri(t0; t1))

=
µ

µi ¡ ai ¢
·
Yi(t) +

t ¡ t0
t1 ¡ t0

¢ (Ri (t0; t1) ¡ Ri(t0; t1))
¸¶

¢ ¢t

+
p

¢t ¢ Xc
i (t)

which is equivalent to

Xc
i (t) = Xi (t) +

1 + ai ¢ (t ¡ t0)
t1 ¡ t0

¢
p

¢t ¢
¡
Ri (t0; t1) ¡ Ri (t0; t1)

¢
.

Now, let ¾¾ 0 be the covariance matrix of the random variables X1; :::;XN, I2 a
subset of forecasted variables k 2 f1; :::;Ng, I1 = f1; :::;Ng¡I2, and § the reordered
covariance matrix ¾¾0 de¯ned by

§ =
µ

§11 §12
§21 §22

¶

=
µ

(Cov [Xi (t) ;Xk (t)])i;k2I1 (Cov [Xi (t) ;Xk (t)])i2I1;k2I2

(Cov [Xi (t) ;Xk (t)])i2I2 ;k2I1
(Cov [Xi (t) ;Xk (t)])i;k2I2

¶
:

Then, the conditional distribution of (Xc
i (t))i2I1

, given (Xc
k (t))k2I2

, is normal with
a conditional expected value of

E
£
(Xc

i (t))i2I1
j (Xc

k (t))k2I2

¤
= §12§¡1

22 (X c
k (t))k2I2
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and a conditional covariance of
¡
Cov

£
Xc

i (t) ;Xc
j (t) j (Xc

k (t))k2I2

¤¢
i2I1;j2I1

= §11 ¡ §12§¡1
22 §21 (11)

(see Greene (1993), p. 76-77 for a proof of this statement). Hence, for all i 2 I1,
t 2 [t0; t1 ¡ ¢t] \ f0; ¢t; :::;m ¢ ¢tg the conditional value Rc

i (t + ¢t) given Rc
i (t)

and Xc
i (t) can be calculated as

Rc
i (t + ¢t) = µi ¢ ¢t + (1 ¡ eai ¢ ¢t) ¢ Rc

i (t) +
p

¢t ¢ Xc
i (t) .

We can therefore state the following lemma.

Lemma 4.3 Let fRc
k(t0; t1) : k 2 I2g be a set of forecasts for fRk(t0; t1) : k 2 I2g

and the time interval [t0; t1]. Furthermore, let Xc
k , k 2 I2, and § be as de¯ned above.

Then, the conditional scenario Rc
i given the forecasts and scenario Ri, i 2 I1, can

be calculated as

Rc
i (t) =

8
>>>>><
>>>>>:

Ri(t) , t 2 [0; t0]
µi ¢ ¢t + (1 ¡ eai ¢ ¢t) ¢ Rc

i (t ¡ ¢t)
+

p
¢t ¢

³
§12§¡1

22 (Xc
k (t ¡ ¢t))k2I2

´
i

+
p

¢t ¢ Xc;0
i (t ¡ ¢t)

, t 2 [t0 + ¢t; t1]

Ri(t) + (Rc
i (t1) ¡Ri(t1)) ¢ 1fi2PEXg (i) , t 2 [t1 + ¢t;T ]

where the random variables
³
X c;0

i (t)
´

i2I1

are normally distributed with an expected

value of 0 and a covariance matrix of §11 ¡ §12§¡1
22 §21 and fi 2 PEXg is the set

of all indices denoting a PEX rate.

We can now proceed as in section 3 with f1; :::;Ng substituted by I1 and Xi (t)
substituted by Xc;0

i (t), i 2 I1, to simulate the values for Rc
i (t +¢t), i 2 I1.

Example. Using our monthly time series for the PEX rates, the DJ Euro Stoxx 50
index, and the MSCI World ex EMU index, we now look ahead in time making the
forecast that there will be a 20% decrease of the DJ Euro Stoxx 50 between year
one and two from now. Restarting from today with time t = 0, this is equivalent
to I2 = 11, t0 = 1, t1 = 2, and R11(t0; t1) = ¡20%. Using equation (11), the
conditional standard deviations are given by

¡
¾C

i
¢
i2I1

=
q¡

Cov
£
XC

i (t) ;XC
i (t)

¤¢
i2I1

=
µ

0:7352;0:8469; 0:8303;0:7953; 0:7594;0:7222; 0:6808;
0:6436; 0:6110;0:5907; 10:8924

¶

and the conditional correlation matrix can be calculated as (in %)

0
BBBBBBBBBBBBBBBB@

100 92 86 80 76 72 67 63 59 57 ¡7
92 100 98 94 91 87 83 78 75 74 ¡6
86 98 100 99 96 94 90 86 83 82 ¡7
80 94 99 100 99 98 95 92 89 88 ¡7
76 91 96 99 100 99 97 95 92 91 ¡8
72 87 94 98 99 100 99 97 95 95 ¡8
67 83 90 95 97 99 100 99 98 97 ¡7
63 78 86 92 95 97 99 100 99 99 ¡7
59 75 83 89 92 95 98 99 100 100 ¡8
57 74 82 88 91 95 97 99 100 100 ¡8
¡7 ¡6 ¡7 ¡7 ¡8 ¡8 ¡7 ¡7 ¡8 ¡8 100

1
CCCCCCCCCCCCCCCCA

:
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Figure 3: Typical set of unconditional scenarios for the aggregated log-return of the
PEXP, DJ Euro Stoxx 50, and the MSCI World ex EMU index

Using equations (7)¡(10) we iteratively derive the matrix ®C as described in section
3. Figures 3 and 4 show a typical set of unconditional and conditional scenarios,
based on a monthly time grid, for the di®erent indices as they will be used to decide
for a speci¯c portfolio composition in the next section.

5 Risk Management

One of the most important ingredients to a successful risk management process is
the creation of a su±ciently good set of risk numbers. These numbers should give the
trader or risk manager a rather complete information on the risk of his trading book
or portfolio. Beside the usually reported numbers expected return and standard
deviation, we apply the so-called lower partial moments to consider the downside
risk of a portfolio. Therefore, we use the generated scenario sets to calculate risk
numbers according to unconditional and forecasted market movements. Given the
scenarios Fk =

¡
Rk

1; :::;Rk
N

¢
and Fc;k =

³
Rc;k

1 ; :::; Rc;k
N

´
, k = 1; :::;K 2 IN, we

calculate the simulations for the future values (returns)

V k
i (t) = Vi

¡
Fk; t

¢
, k = 1; :::;K ,

for the PEXP (i = 1), the DJ Euro Stoxx 50 (i = 2), and the MSCI World ex EMU
(i = 3). For any portfolio ' = ('1; '2;'3) which we consider to be ¯xed from 0
to the end of the planning horizon T for the ease of exposition, the future value
V ('; t) of this portfolio at time t is given by the random variable

V ('; t) =
NX

i=1

'i ¢ Vi (t)
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Figure 4: Typical set of conditional scenarios for the aggregated log-return of the
PEXP, DJ Euro Stoxx 50, and the MSCI World ex EMU index

with V ('; 0) denoting the portfolio value at time 0. Using our simulations, the
future value V ('; t) is simulated by

V k ('; t) =
NX

i=1

'i ¢ V k
i (t) , k = 1; :::; K.

To measure the downside risk of the future value at time t we consider the discrete
version of the lower partial moment of order l 2 IN corresponding to an investor
speci¯c benchmark (return) B (t) 2IR which is de¯ned by

LPM l ('; V; B; t)=
X

k=1;:::;K
V k(';t)<B(t)

pk¢
¡
B (t) ¡V k ('; t)

¢l
. (12)

The lower partial moment only considers realizations of the future value of V below
the investor specī c benchmark measured to a power of l. For l = 0 this is the
probability that the random future value falls below the given benchmark which is
referred to as shortfall probability. Setting the benchmark equal to 0 re°ects the
probability of loss. For l = 1, the lower partial moment is the expected deviation
of the future values below the benchmark, sometimes called (expected) regret. For
l = 2, the lower partial moment is weighting the squared deviations below the bench-
mark and thus is the semi-variance if the benchmark is set equal to the expected
future value. For a more detailed discussion of the lower partial moments see, e.g.,
Harlow (1991) or Zagst (2002). It should be noted that the lower partial moment of
order 0 is closely related to the value at risk (VaR) of a portfolio or trading book.
The VaR of a portfolio ', given a shortfall probability ® 2 (0;1) and a time horizon
t, considers the potential change in the portfolio value between times 0 and t. It is
de¯ned to be the di®erence of the expected change in the portfolio value and the
benchmark B (t) at which the lower partial moment of order 0 ¯rst crosses the level
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®. For an overview on the di®erent methods to calculate the VaR of a portfolio see,
e.g., Wilson (1996), Smithson and Minton (1996), or Zagst (1997). In this section
we will use the following criteria to decide for a specī c portfolio composition:

1. The expected return over a ¯ve year planning horizon should be maximized
under normal market conditions (unconditional scenarios).

2. At each t 2 f1y; :::; 5yg the expected return under the given forecast (condi-
tional scenarios) should be at least 2:5% p.a.

3. At each t 2 f1y; :::;5yg the probability of getting a portfolio return of at least
4% under normal market conditions should be greater than 75%. Furthermore,
the probability of loss under the given forecast is limited by 30%.

4. We want to choose between the three portfolios '1 = (40%; 30%;30%),
'2 = (50%;25%;25%) and '3 = (60%; 20%; 20%) today under the assumption
that we plan to hold the portfolio until the end of the planning horizon (in 5
years).

Using the (conditional) scenarios created as described in the previous section, we
get the following information for the given portfolios (numbers under conditional
scenarios in brackets):

'1 1y 2y 3y 4y 5y

Expected return p.a. 12.24 (12.24) 11.99 ( 1.65) 12.07 ( 4.88) 12.21 ( 6.60) 12.45 ( 7.77)

P(R
¡

'1 ; 0; t
¢

< 4%) 21.10 (21.10) 15.00 (69.30) 10.30 (43.60) 6.30 (30.30) 4.60 (19.10)

P(R
¡

'1 ; 0; t
¢

< 0%) 11.90 (11.90) 5.50 (38.00) 2.30 (15.70) 0.90 ( 5.20) 0.40 ( 2.20)

'2 1y 2y 3y 4y 5y

Expected return p.a. 11.17 (11.17) 10.98 ( 2.27) 11.07 ( 4.96) 11.22 ( 6.40) 11.46 ( 7.40)

P(R
¡

'2 ; 0; t
¢

< 4%) 20.90 (20.90) 14.90 (67.50) 10.10 (42.10) 5.90 (28.60) 4.20 (17.50)

P(R
¡

'2 ; 0; t
¢

< 0%) 9.80 ( 9.80) 3.80 (28.90) 1.10 (11.20) 0.70 ( 3.00) 0.10 ( 1.10)

'3 1y 2y 3y 4y 5y

Expected return p.a. 10.07 (10.07) 9.93 ( 2.87) 10.01 ( 5.02) 10.17 ( 6.18) 10.40 ( 7.00)

P (R
¡

'3 ; 0; t
¢

< 4%) 20.80 (20.80) 14.20 (64.00) 9.70 (39.70) 5.90 (27.00) 3.50 (15.40)

P (R
¡

'3 ; 0; t
¢

< 0%) 8.20 ( 8.20) 2.50 (20.10) 0.70 ( 5.00) 0.30 ( 0.90) 0.10 ( 0.20)

The only portfolio holding all conditions required is portfolio '3. We therefore
decide for an investment of 60% in the interest rate market and of 20% in each of
the two stock markets. It should be noted that the choice of the optimal portfolio
was rather easy because we did only allow for a ¯nite set of possible portfolios. If the
set of possible portfolios is continuous, we can apply a mixed-integer optimization
program to solve the previously described problem (see, e.g., Zagst (2002) for more
details). For the investor it is important to understand the implications of a chosen
or proposed portfolio strategy on a strategic time horizon. Therefore, he is interested
in evaluating potential portfolio developments and their characteristics at di®erent
future points in time. For the ease of exposition we did show the implications of a
simple buy-and-hold strategy. More complex strategies, e.g. rebalancing strategies
or the inclusion of stop-and-loss decision rules, can easily be incorporated in the
presented concept but need more detailed information on the investor's preferences
and constraints.



16

6 Conclusion

We introduced a multi-factor market model to describe the evolution of interest rates
and stock indices which may also be used for pricing ¯nancial derivatives. The model
was solved and ¯tted to empirical market data and used for generating scenarios
on stock and bond market indices. We showed how the specī c forecasts made by
researchers and traders can be integrated to derive conditional scenarios for the
whole universe considered. These scenarios were then applied to the management of
a portfolio or trading book under given limits for the downside risk and the expected
performance of the resulting portfolio.

7 Appendix

Proof of theorem 2.1. Consider the deterministic matrix di®erential equation
¢
©(t) = A©(t) ; ©(0) = IN

where IN denotes the N £ N identity matrix. The solution of this deterministic
matrix di®erential equation is given by

© (t) =

0
BBBBBB@

e¡a1¢t 0 ¢ ¢ ¢ 0
0
¢
¢
¢

¢
¢

¢

¢
¢
¢
0

0 ¢ ¢ ¢ 0 e¡aN ¢t

1
CCCCCCA

:

Using Karatzas and Shreve (1991), p. 354-355, the solution of the stochastic di®er-
ential equation (2) is given by

Y (t) = © (t)
·
Y (0) +

Z t

0
©¡1 (s)µds +

Z t

0
©¡1 (s)¾dW (s)

¸

with

m (t) = E [Y (t)] = ©(t)
·
Y (0) +

Z t

0
©¡1 (s) µds

¸

and

C (t) = (Cov [Yi (t) ;Yk (t)])i=1;:::;N
k=1;:::;N

= ©(t)
·Z t

0
©¡1 (s) ¾

¡
©¡1 (s)¾

¢0 ds
¸
(©(t))0 :

Hence,

Yi (t) = e¡ai¢t ¢

2
4Yi (0) +

Z t

0
µi ¢ eai¢sds +

NX

j=1

Z t

0
eai¢s¾ijdWj (s)

3
5

= Yi (0) ¢ e¡ai ¢t + µi ¢ h (ai; t) +
NX

j=1

¾ij ¢ e¡ai ¢t ¢
Z t

0
eai¢sdWj (s)

with

h (ai; t) =

(
1¡e¡ai¢t

ai
, if ai > 0

t , if ai = 0.
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Furthermore,
mi (t) =Yi (0) ¢ e¡ai ¢t + µi ¢ h (ai; t) .

Using

©¡1 (t)¾ =

0
BBBB@

¾11 ¢ ea1 ¢t ¢ ¢ ¢ ¾1N ¢ ea1 ¢t

¢
¢
¢

¢
¢

¢

¢
¢
¢

¾N1 ¢ eaN ¢t ¢ ¢ ¢ ¾NN ¢ eaN ¢t

1
CCCCA

we get

Z t

0
©¡1 (s) ¾

¡
©¡1 (s)¾

¢0 ds =

0
@

Z t

0

NX

j=1

¾ij ¢ ¾kj ¢ e(ai+ak)¢sds

1
A

i=1;:::;N
k=1;:::;N

=

0
@h (ai + ak ; t) ¢

NX

j=1

¾ij ¢ ¾kj

1
A

i=1;:::;N
k=1;:::;N

and thus

C (t) = © (t)

0
@h (ai + ak ; t) ¢

NX

j=1

¾ij ¢ ¾kj

1
A

i=1;:::;N
k=1;:::;N

(© (t))0

= ©(t)

0
@

NX

k=1

h (ai + ak; t) ¢
NX

j=1

¾ij ¢ ¾kj ¢ ©kl (t)

1
A

i=1;:::;N
l=1;:::;N

= ©(t)

0
@h (ai + ak ; t) ¢

NX

j=1

¾ij ¢ ¾lj ¢ e¡al¢t

1
A

i=1;:::;N
l=1;:::;N

=

0
@

NX

i=1

©ki (t) ¢ h (ai + ak; t) ¢
NX

j=1

¾ij ¢ ¾lj ¢ e¡al¢t

1
A

k=1;:::;N
l=1;:::;N

=

0
@h (ai + ak; t) ¢

NX

j=1

¾kj ¢ ¾lj ¢ e¡(ak+al)¢t

1
A

k=1;:::;N
l=1;:::;N

=

0
@h (ai + ak; t) ¢

NX

j=1

¾kj ¢ ¾lj

1
A

k=1;:::;N
l=1;:::;N

.
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