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Abstract

This paper presents a structural credit model with underlying stochastic volatility, a CIR process, combining the Black/Cox

framework with the Heston Model. We allow to calibrate a Heston Model for a non-observable process as underlying of

the Black/Cox Model. A closed-form solution for the price of a down-and-out call option on the assets with the debt

as barrier and strike price is derived using the concept of optional sampling. Furthermore, estimators are derived with

the Method of Moments for Hidden Markov Chains. As an application in Statistical Finance, the default probabilities of

Merrill Lynch during the financial crisis are examined.

Keywords: Credit models, Barrier options, Stochastic volatility, Black/Cox model, Heston model

1. Introduction

In order to describe the performance of a company on a daily basis, we can often refer to quoted stock prices only. These

prices reflect the market value of the company’s equity. Yet, it’s mainly the assets and the liabilities which drive the

performance of a stock, and which may develop independently. The higher the leverage ratio (i. e. the ratio between debt

and equity capital) the more important it becomes to consider these underlying factors. Yet in general, we cannot observe

daily time series for assets or liabilities.

Following the theory of structural models, whose foundations have been laid mainly by Merton (1973) and Black and Cox

(1976), the company’s value i.e. its equity’s value is modeled as an option on the asset value with the value of the debt
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as strike price. In this paper, the value is modeled as the value of a down-and-out call option (DOC) with the assets as

underlying and the value of the debt as both, knock-out barrier and strike price. A simple call option pays the difference

between the underlying and the strike price at maturity if this difference is positive. A down-and-out call option only pays

this difference if the underlying does not fall below a certain threshold at any time before maturity. This threshold is called

knock-out barrier. Knock-out barrier and strike price do not necessarily have to be equal (see Escobar et al., 2012).

Modeling the assets as a Brownian motion as in the Black/Cox Model would have the drawback of assuming normally

distributed returns and constant volatility. However, in particular the financial crisis has shown that volatility is not

constant over time. Heston Model, which is used here to model the assets allows the company’s assets to have stochastic

volatility. This model is chosen for its suitability in the pricing of financial products as well as for its closed-form

expression for higher conditional moments. It should be noted that Heston Model is a continuous-time stochastic volatility

(SV) process as oppose to popular discrete-time SV processes known as ARCH/GARCH (see Bollerslev, 1986). There

is a recent literature on continuous-time extensions of GARCH models, see for example COGARCH by Brockwell et al.,

(2006); but the complexity of these extensions for estimation and pricing purposes makes well-established SV models as

Heston model still dominant for academics and practitioners alike. The first part of the paper focuses on the modeling

and introduces a closed-form formula for the down-and-out option. In the second part, estimators are derived using the

method of moments on a discretization of the process as well as the mixing properties of the Hidden Markov Chain. This

generalization is inspired by the work of Genon-Catalot et al., (2000) and allows for the calibration of the parameters of

the asset process.

The model not only allows to describe the value of the company and its assets. It also enables to simulate multiple

scenarios of possible paths how the stock would evolve over time according to the model. These scenarios can be analyzed

under different aspects. As an example, the default probabilities in these scenarios are examined. In this example, the

model is applied to a case which can be regarded as one of the key events of the financial crises: the takeover of Merrill

Lynch by the Bank of America, which The Wall Street Journal headlined “The End of Wall Street”.

This paper is organized as follows: Section 2.1 introduces the stochastic volatility model for the assets. Section 2.2

presents the relationship between assets and equity as well as some numerical results. Section 2.3 derives the estimation

methodology, while in Section 3 the approach is applied to data from Merrill Lynch. Section 4 gives a conclusion of the

study.

2. The Stochastic Volatility Model

Asset returns, and hedge fund returns in particular, are not normally distributed. Thus, from today’s point of view, a

Black/Scholes Model is barely able to map reality in an appropriate way, as one of the main assumptions is that the

returns are normally distributed. Furthermore, the Black/Scholes Model assumes the volatility of the asset process to be

constant over time. This characteristic feature is called homoscedasticity. However, even the stock market suggests that

this is not the case. For example, it can be observed that those times when the stock markets take a hit, the (implied)

volatility is higher than in “peaceful” times of strong markets, see e.g. Engle (1982) or Heston (1993). Therefore, we

propose a model with stochastic volatility to describe the asset process which also implies a stochastic volatility model

for the equity process of the company.

2.1 Model Setup

Let (Ω, F , F, Q) be a filtered probability space on the domain Ω with sigma algebra F , filtration F = {Ft}t≥0, and a

probability measure Q on (Ω, F ) . The underlying asset process A and the variance v of that process can be expressed

through the following SDEs:

dA(t) = μA(t)dt +
√

v(t)A(t)dZ(t) (1)

dv(t) = κv (v∞ − v(t)) dt + εv
√

v(t)dZv(t) (2)

where

A = underlying asset process,

v = variance of asset process, where the volatility σA =
√

v,

μ = drift of the assets,

Z, Zv = two independent Wiener processes in the probability space (Ω, F , Q),

v∞ = long-term value of volatility,

εv = volatility of the variance process,

κv = mean-reversion speed.

These assumptions provide the bare minimum to obtain a setting where closed-form solutions are available not only for

the price of the credit products but also for a fast and reliable estimation of the parameters. For example, in a more general
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formulation, Z and Zv can be correlated, however the assumption of zero correlation is required to obtain closed-form

expressions for the estimators in Section 2.3. The parameters v∞, κv and εv have to fulfill the following conditions:

κv · v∞ ≥ 1

2
ε2

v (3)

κv > 0 (4)

These conditions guarantee strict stationarity and α-mixing, see Genon-Catalot et al. (2000) which is necessary for the

derivation of estimators in Section 2.3. Furthermore, the barrier as the debt is exponentially growing with the risk-free

rate r:

D(t) = D(0) · e
∫ t

0
r ds = D(T ) · e−

∫ T
t r ds (5)

where D(t) denotes the value of the company’s debt (or “liabilities”) at time t.

The model defined by (1) and (2) is a so-called stochastic volatility model. Heston (1993) developed the model to over-

come the shortcomings of the Black/Scholes Model where the latter seems to be too restrictive to map reality. Therefore,

the model described by (1–2) is often referred to as the “Heston Model”. In this model, the variance (2) is a stochastic

process, introduced by Cox, Ingersoll, and Ross (1985), with the following features: First, the variance process has a

long-term value or a “limit” v∞ around which it oscillates. Next, there is the mean-reversion speed κv. This parameter

describes how fast the variance will adjust to its mean v∞. The term (v∞ − v(t)) is the deviation of the current variance

from v∞. This term is weighted with the mean-reversion rate κv. Therefore, the higher κv the faster the variance will

tend towards v∞. Up until now, the variance process would be deterministic. In order to make it stochastic, the diffusion

term εv
√

v(t)dZv(t) is added, where εv is the volatility of the variance process itself. The characteristics of the stochastic

volatility model become “visible” in Figure 1.

2.2 Barrier Options in the Stochastic Volatility Model

The aim is to price a barrier option with strike D(T ) on the assets A:

C(t, A) = EQ

[
e−

∫ T
t r(s) ds ·max {A(T ) − D(T ), 0} · 1{τ>T }

∣∣∣∣ Ft

]
(6)

where

C(t, A) = option price of the barrier option with underlying A at time t,

1{τ>T } =
{

1 if τ > T
0 else

and τ is the time of default of the option, i.e. the first time, the asset process A crosses the barrier D. It is modeled as a

stopping time on the interval (t, T ]:

τ = inf
{
t′ ∈ (t, T ] : A(t′) < D(t′)

}
(7)

The symbol EQ denotes the expected value under the arbitrage-free measure Q.

Equation (6) describes a down-and-out call option with underlying A, strike and knock-out barrier D. This means that

when the price of the underlying hits or falls below the barrier the option expires (Note 1).

2.2.1 Derivation of Option Pricing Formula

For deriving the formula of the option price described by (6), the most straight-forward approach would be to solve the

corresponding SDEs. However, in this particular case, the option price can also be derived with the help of optional

sampling, which actually is more elegant than working through the SDEs. As it is shown in detail in the appendix, the

price of the option is:

C(t, A) = (A(t) − D(t)) · 1{τ>t}. (8)

The big advantage of (8) is that it provides a straight-forward inverse to calculate the asset value if both debt and equity

value are known: Given the value of the equity C(t) as well as the liabilities D(t), and assuming that the company didn’t

default up to time t, i.e. 1{τ>t}, the underlying assets A(t) can be calculated as follows:

A(t) = C(t) + D(t) (9)
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Next, the option price – given a set of parameters specifying (1) and (2) – is calculated according to this formula and

compared to a numerical simulation of the option price which is gained by evaluating (6). For this purpose, a large

number of possible underlying asset paths is simulated with the same set of parameters. Then, the option price is the

expected value of the discounted payoffs of all paths.

Figure 1 gives five examples for possible paths following the stochastic volatility model defined in (1) and (2). The

parameters were chosen as follows, and are the same for all five paths:

A(0) r v(0) = v∞ κv εv

100 0.04 0.01 0.5 0.1

Figure 1 displays the variance process v(t), the according volatility process which is the square root of the variance

process, and the asset process A(t), where the shading of lines in these three graphs indicates that the three time series

belong together.

For validating the formula, the price for several options is calculated analytically according to (8). This price is then

compared to a numerical simulation of the option price. For that purpose, 10 000 paths under the given parameter set (the

same as above, with t = 0 and T = 5) for the underlying asset process are simulated. For each of those paths, the payoff

is calculated as

PO = max {A(T ) − D(T ), 0} · 1{τ>T } (10)

in accordance with (6). The “numerical option price” is the discounted mean over those 10 000 payoffs, i.e.

Cnum(t, A) = e−
∫ T

t r(s) ds · PO

where PO = 1
n
∑n

i=1 POi.

Table 1 presents the outcomes of this test. From left to right, the columns give the values of the initial debt D(t) = D(0), and

the number of paths for which the payoff equals zero. Next, the discounted mean over all payoffs is provided (Cnum) along

with the “correct” analytical option price, i.e. the option price according to Formula (8), together with their difference

and the standard deviation of the 10 000 values for Cnum, i.e. the discounted payoff. The last four columns provide some

validation for the derived formula in form of the confidence interval. Considering these number, this test numerically

validates the analytical derivation of Equation (8).

2.3 Estimation and Fitting of Parameters

Having the formula for the barrier option at hand, the next tool required is the estimators for the method of moments. The

aim is to find the parameters of the asset process which is calculated from the equity and debt time series employing (8).

In the following, there are always three different time series of interest: (1) the underlying asset path A of the company, (2)

its debt D, which is also referred to as its liabilities, and (3) the company’s equity C which is also referred to as the stock

price itself or the equity. Furthermore, there are different possible interpretations of the initial value of the debt D(0). If

A(0) = 1, then D(0) can be interpreted as the percentage of debt capital in the financing structure of the company at time

t = 0. If C(0) = 1, then D(0) is the leverage ratio the company operates with, because the leverage ratio is defined as the

ratio between debt and equity capital.

The derivation of the estimators follows the lines of Genon-Catalot et al. (2000). As already mentioned, the two Wiener

processes Z and Zv denoting the stochastic component of the asset and volatility process are assumed to be uncorrelated.

This leaves the following unknown parameters of the model described in (1) and (2): Θ = (μ, v∞, κv, εv) which are to

be fitted. The information on the debt D as well as the risk-free rate r can be observed and are assumed to be known.

Actually, there is one more parameter which is unknown from the start which is v(t), the level of variance at the time t the

option is to be priced for (usually, t = 0). However, having v0 = v(0) as well as v∞ as free parameters might bear problems

for the fitting. Therefore, it is assumed that v0 = v∞. Note that this does not imply that v∞ is equal to the current volatility

at the time the option price is calculated. As the volatility v itself is not observable and thus cannot directly influence the

fitting, v∞ and v0 are rather regarded as two parameters of the model.

First of all, the actual calculation of suitable estimators requires some preparation. Assuming the model given by Equa-

tions (1) and (2), an application of Itô’s lemma to the process Y := log A immediately shows:

dY(t) =
(
μ − v(t)

2

)
dt +

√
v(t)dZ(t) (11)
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Under the condition that the variance process (2) is known and assuming Y(0) = 0 i.e. A(0) = 1,

(Y(t)|v) := (Y(t)|v(s), 0 < s < t) ∼ N
(
μ · t − 1

2

∫ t

0

v(s) ds,
∫ t

0

v(s) ds
)

(12)

where X ∼ N(μ, σ2) means that the random variable X is normally distributed with mean μ and variance σ2.

Lemma 2.1 Assume the partition {ti}ni=1 of the time interval [0, t] where � := ti − ti−1. Set

R(i) =

⎛⎜⎜⎜⎜⎝μ − V(i)
2

⎞⎟⎟⎟⎟⎠ · √� + 1√�

i�∫
(i−1)�

√
v(s)dZ(s)

V(i) =
1

�
i�∫

(i−1)�
v(s) ds (13)

then

R(i) =
Y(i�) − Y((i − 1)�)√� (14)

Using (12) and the fact that the sum of two normally distributed random variables is also normally distributed, it follows

that:

(R(i)|v) ∼ N
(√�μ − 1

2
√�

∫ i�

(i−1)�
v(s) ds,

1

�
∫ i�

(i−1)�
v(s) ds

)

and in terms of (13)

(
R(i), |V

)
∼ N

((
μ − 1

2
V(i)

)
· √�, V(i)

)
. (15)

The concept of α-mixing was introduced by Rosenblatt (1956) under the term “strongly mixing”. A formal definition of

α-mixing can be found in the appendix. It can be interpreted as a form of asymptotic independence of a process: X(t) and

X(s) are more nearly independent the farther apart s and t, as commented by Davidson (1993). Thus, α-mixing is a weaker

form of dependence. Under the mixing condition a central limit theorem can be shown to hold for general processes. A

deeper discussion of α-mixing and other forms of the mixing-condition can be found in Bradley (2005).

Proposition 2.2 Assume the process (2) satisfies (3) and (4). Then, for the process (14) there exist the following estimators
for the moments of R:

1

n

n−1∑
i=0

R(i + 1)
a.s.−→ √�μ −

√�
2

E
[
V(1)

]
(16)

1

n − 1

n−2∑
i=0

R(i + 1)R(i + 2)
a.s.−→ �μ2 − �μE

[
V(1)

]
+
�
4
E

[
V(1)V(2)

]
(17)

1

n

n−1∑
i=0

R2(i + 1)
a.s.−→ �μ2 − (�μ − 1)E

[
V(1)

]
+
�
4
E

[
V

2
(1)

]
(18)

1

n − 1

n−2∑
i=0

R2(i + 1)R(i + 2)
a.s.−→

(
�μ2 − (�μ − 1)E

[
V(1)

]
+
�
4
E

[
V

2
(1)

])

·
(√�μ −

√�
2

E
[
V(1)

])
(19)

1

n

n−1∑
i=0

R4(i + 1)
a.s.−→ �2μ4 +

(
6 � μ2 − 2 �2 μ3

)
E

[
V(1)

]

+

(
3

2
�2 μ2 − 6 � μ + 3

)
E

[
V

2
(1)

]
(20)
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where E
[
V(1)

]
, E

[
V

2
(1)

]
, and E

[
V(1)V(2)

]
can be calculated as (see Proposition 4.1 in Genon-Catalot et al., 2000):

E
[
V(1)

]
= v∞ (21)

E

[
V

2
(1)

]
= v2

∞ +
ε2

vv∞
κv

(
κv � −1 + e−κv�

)
κ2v�2

(22)

E
[
V(1)V(2)

]
= v2

∞ +
ε2

vv∞
2κv

(
1 − e−κv�

)2

κ2v�2
(23)

In order to find the optimal parameters, the sum of deviations between the empirical and theoretical statistics of equations

(16) to (20) is minimized:

min
Θ

∑
i∈{(16),(17),(18),(19),(20)}

(empS tati(Θ) − theoS tati(Θ))2 (24)

where empS tati denotes the empirical estimator (i.e. the left hand side) of equation i, and theoS tati the theoretical

estimator (i.e. the right hand side). (24) represents the basic optimization problem of how to fit the parameters. This

minimization could be avoided if the system of equations (16–20) led to closed-form solutions, but the nonlinearity of the

system avoids such a quick path. Equation (24) could be altered by assigning different weights on the specific estimators

or completely neglecting one or more of the five estimators. Theoretically, all these approaches would lead to consistent

estimators although not efficient ones unless using a suitable more complicated set of weights as in the Generalized Method

of Moments. Furthermore, we could also include moments of order higher than 4. However, the theoretical estimators get

more complex and contain the parameters with higher exponents. This would make the numerical estimations less stable.

3. Application: Merrill Lynch and the Financial Crisis

In order to show an application of the model, one of the most spectacular stories of the financial crises is scrutinized:

the downfall of former Wall-Street giant Merrill Lynch (Note 2). Merrill Lynch stocks have long been deemed a save

investment. But in September 2008, the existence of Merrill Lynch could only be saved by the takeover by the Bank of

America. The stock price reached its peak in early 2007 being close to 100 USD. After still announcing record earnings

in early 2007, Merrill Lynch was severely struck by the subprime crisis. In the summer of 2008, the events speeded up

dramatically. Finally, the investment bank with the bull as figurehead fell prey to the bear. On September 15, Bank of

America announced its intention to acquire Merrill Lynch. This way, Merrill Lynch was prevented from pursuing the

same tragic fate as Lehman Brothers which were filing for insolvency that very same day.

The first period which is to be examined in this example is the time between July 2001 and June 2007. The performance

over that time horizon seemed to be satisfying (see Figure 2), yet what was already striking is the fairly high volatility of

the stock price. The daily mean of log-returns is 0.0227% (corresponding to an annual return of 5.71% which is calculated

assuming 252 trading days per year), the standard deviation is 1.85% (which can be approximated by an annual standard

deviation of 29.35%), the skewness is–0.140, and the kurtosis is 6.06. But at first sight, there seemed to be no obvious

sign that Merrill Lynch could default so soon.

3.1 Fitting the Model Parameters

The introduced stochastic volatility model requires several parameters which have to be determined before the model can

be applied: the time to maturity T , the risk-free rate r, and the level of debt D(0). The time to maturity is the time until

the barrier option introduced in Section 2.2 extinguishes. It is therefore assumed to represent the average time to maturity

of the company’s liabilities. Unfortunately, this information is not provided by Merrill Lynch. For that reason, the time to

maturity is assumed to be 5 years, i.e. T = 5 to represent the average time of maturity of Merrill Lynch’s liabilities. In

order to get an appropriate risk-free rate, the average of the 5-year treasury rate over the according time horizon is used.

Therefore, r = 3.93%.

Furthermore, the initial debt D(0) is required. In order to gain that information, the adjusted leverage ratio (Note 3)

is extracted from the company’s annual reports which are summarized in Table 2. The average adjusted leverage ratio

over the considered time horizon is 12.7. However, note that Merrill Lynch defines the leverage as assets (not liabilities)

divided by equity. Thus, the adjusted leverage ratio according to the common definition,, is 11.7. In order to define the

initial value of the debt D(0) assume that the initial value of the equity is C(0) = 1. Therefore, D(0) = 11.7.

The problem with fitting the model parameters is that the variance process cannot directly be observed, in particular κv
and εv. Thus, a sufficiently large number of data points is required in order to capture the characteristics and influence

of these parameters. For finding the model parameters, the procedure works as follows: A value for εv is fixed, and the
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remaining parameters μ, v∞, and κv are fitted. The optimal set of parameters (including the optimal εv) is that set which

minimizes the error function (i.e. the sum of squared residuals as described in (24) as a global minimum.

The parameters Θ = (μ, v∞, κv εv) for the time series of the Merrill Lynch stock between July 2001 and June 2007 are the

following:

μ r v∞ κv εv

0.040916 0.000323 0.355731 0.5 0.012545

At first sight, the long-term variance seems to be fairly low. Yet, one has to bear in mind that the model has one important

assumption which is that the debt is deterministic, i.e. it has no stochastic component and does not allow for a volatility

of the returns of the debt. Thus, only the volatility of the equity can influence the volatility of the assets and vice versa.

Furthermore, the leverage ratio is fairly high which dilutes the volatility of the equity in the asset process.

The value of κv already indicates the necessity to apply the stochastic volatility model, as the parameter is clearly different

from 0 (κv = 0, under Equation 4, would make the stochastic volatility model a common Black/Scholes Model). However,

as this statement has no scientific relevance, an ARCH-test is applied. This test has been developed by Engle (1982)

in order to test time series for homoscedasticity (constant volatility over time). In this case, the hypothesis of constant

volatility can be rejected at a significance of 4.8 · 10−7 emphasizing the use of the stochastic volatility model.

Figure 3 shows the histogram of daily returns of Merrill Lynch between July 2001 and June 2007. Furthermore, the normal

distribution with same mean and standard deviation as the historic distritbuion as well as the distribution according to

the stochastic volatility model is displayed. For the latter, more than 1 million daily asset returns (1 000 time series each

consisting of 1 506 daily returns) have been simulated with the estimated parameters and the according equity returns have

been calculated. The graph already shows that the stochastic volatility model maps reality much better than a common

Black Scholes model. In order to validate this observation, a chi-square test is applied (see Chernoff and Lehmann, 1954).

First, it is tested whether the historic returns follow a normal distribution. The test statistic with value 961.85 is clearly

higher than the 95% critical value of the chi-square distribution 98.48 (accounting for two estimated parameters, mean

and standard deviation). Therefore, the hypothesis can clearly be rejected. Next, the stochastic volatility model is tested.

The resulting value of the test statistic is 89.82, and thus lower than the critical value of 96.22 (now accounting for four

estimated parameters). As we cannot reject the hypothesis, we conclude that the stochastic volatility model maps the

distribution of historic returns well.

3.2 The Default Risk of Merrill Lynch

One interesting aspect which is worth to study is the default risk of Merrill Lynch. In July 2007, all the information which

has been used so far was known. Therefore, the estimated parameters Θ = (μ, v∞, κv, εv) reflect the information given at

that point of time. In order to study the default risk, 10 000 underlying asset time series for Merrill Lynch are simulated

over a 100-year time horizon applying the estimated parameters μ, v∞, κv, and εv starting on July 1, 2007. As already

discussed above, it is arguable whether these simulated asset time series reflect Merrill Lynch’s true assets. However, a

model is always a simplification of reality, and despite the shortcomings of the simulated asset time series, this does not

affect the validity of the equity time series gained by that model.

Every simulated asset time series is compared to the debt which is assumed to follow (5). Merrill Lynch would have to

declare insolvency once its liabilities exceeded its assets. Therefore, the time of default is calculated as τ according to (7),

as the first point of time where the assets fall below the debt. Figure 4 shows the results of that test: As already mentioned,

10 000 asset time series have been simulated daily over a time horizon of 100 years. Figure 4 indicates how many paths

default in the respective year, for example, 11 of them already default within the first year which represents July 2007

until June 2008, 34 default in the second year which represents July 2008 until June 2009. The last bar comprises those

paths which have not defaulted within the first 100 years (i.e. until June 2107) which are 5 913 paths. As the total of

simulated time series is 10 000, the numbers can easily be interpreted as default probabilities in the respective years: The

probability for a default amounts to 0.11% in the first year (starting on July 2007) and 0.34% in the second year.

With that information another interesting question can be answered: What is the probability for Merrill Lynch to survive

over a certain span of time? This answer is given in Figure 5. Assuming the probabilities for the event of a default given

in Figure 4, this figure provides the probability that Merrill Lynch survives until the respective year, which is 1 minus the

sum over the default probabilities until that year. As the time series have been simulated daily, Figure 5 provides an almost

continuous function. This graph tells that, for example, the probability to survive 10 years is 88.88%, and the probability

to survive 100 years is 59.13%.

Figure 4 already points out that there is a significant default probability for Merrill Lynch in the years from July 2007 on,

given the information described above. The probability for a default until June 2009 would be estimated to be 0.45% by
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this model. Although this number still seems to be fairly low (but is not negligible though), it can already be concluded

that even Merrill Lynch bears a certain default risk. However, the takeover by the Bank of America did not mean a default

for Merrill Lynch. Merrill Lynch accepted an offer by the Bank of America in order to overcome its own default risk, and

the Bank of America finally paid 50 billion USD for that acquisition according to the Wall Street Journal.

3.3 Development of Default Risk

It is even more interesting to compare the findings so far with the condition of Merrill Lynch not before but in the middle of

the financial crisis. Therefore, the situation of Merrill Lynch in January 2008 is examined. In order to have a comparable

data basis, but which still allows to employ the stochastic volatility model, the time between January 2003 and December

2007 is considered for fitting the parameters. The average 5-year US treasury rate is 3.94%, and from the average adjusted

leverage ratio we get D(0) = 12.6.

The fitted parameters Θ = (μ, v∞, κv, εv) for Merrill Lynch based on the time between January 2003 and December 2007

are the following:

μ r v∞ κv εv

0.041350 0.000637 0.595501 0.5 0.024382

Once more, 10 000 asset paths are simulated with those parameters and the event of default is examined. Figure 7 shows

the number of defaults in the respective year. In this graph, the first year represents the time from January 2008 until

December 2008, the second year is 2009, and so on. Especially when comparing these outcomes to those presented

in Figure 4, the highly increased default risk becomes obvious. In the new setting, 0.47% of the simulated time series

default within the first year (compared to 0.11%), and 6.27% default within the first three years (compared to 1.40%). In

only 41.39% of the time series, the company does not default over the simulated time horizon of 100 years (compared to

59.13%). Figure 8 displays the development of the survival probabilities for the two examined periods (the first year of a

possible default starts in July 2007, or January 2008). The survival probability decreases notably. Especially in the first

years, the probability to survive is dramatically lower for the situation in January 2008. This means that already on January

1st, 2008 this model only shows a 3:1 chance for Merrill Lynch to survive the next ten years. Therefore, the “unexpected”

development of July, August and September 2008 does not really come as such a big surprise anymore. Considering that

Merrill Lynch actually has not defaulted in September 2008 when being taken over by the Bank of America, it was almost

clear that with these prospects, something “had to happen”.

Furthermore, Figure 8 compares the survival probabilities of this model with the survival probabilities derived from the

S&P credit rating of Merrill Lynch. In January 2008, Merrill Lynch was rated “A+”. Assuming that the transition matrix

for the rating classes will not change over the next 100 years, yields the survival probabilities indicated by the dotted line.

It becomes clear that, in particular, in the near future, the credit rating severely underestimates the probability of a default

compared to the credit model under stochastic volatility.

4. Conclusion

This paper presented a model for a company’s asset process if only the equity process is observable. Companies’ equity

is regarded as a barrier option, namely a down-and-out call on the company’s assets where barrier and strike price are

equal to the debt. The assets are modeled with stochastic volatility providing for more degrees of freedom than a common

Black/Scholes Model. Thus, this paper combines the credit model as in Black and Cox (1976) with the stochastic volatility

model in Heston (1993). As a first result, a closed-form solution for the price of a down-and-out call option on the assets

with the debt as barrier and strike price has been derived. Second, a method of gaining consistent estimators was derived

from Genon-Catalot et al. (2000), and five estimators were given explicitly which are utilized during the fitting process for

single time series. Given the equity value of the company and information on the liabilities, we can derive an asset process

where the assets have stochastic volatility. These contributions provide a computationally and statistically friendly setting

for practitioners in economics and finance.

The applications in this study have been limited to one dimension. One potential extension of this research is to look at

several companies and estimate their dependence structure within our stochastic volatility setting. Furthermore, it would

also be of interest to examine a setting in the stochastic volatility model where the barrier is not equal to the strike price

and/or where the debt is assumed to follow a stochastic process to account for uncertainty on the liability side as well. Yet,

this would probably make it a lot more difficult to arrive at (closed-form) formulas for option prices or to obtain estimators

with sound statistical properties. However, models with a higher complexity than the Black/Scholes Model where assets

follow a Geometric Brownian Motion are very important, in particular stochastic volatility models which are able to better

capture realistic features of market behavior, and thus better describe reality.
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Appendix

Derivation of Option Pricing Formula The following lemma is stated from Zagst (2002, Theorem 2.21, p. 21):

Lemma 5.3 (Optional Sampling) Let (Ω, F , Q, F) be a filtered probability space and X = (Xt)t≥0 a right-continuous
martingale which means that all paths of Xt are right-continuous. Furthermore, let τ be a stopping time and 0 ≤ s ≤ t <
∞. Then, for all t ≥ 0 it holds Q-a.s. that

E [Xt∧τ | Fs] = Xs∧τ (25)

where the stopped process Xt∧τ is defined as

Xt∧τ(ω) :=

{
Xt(ω) if t ≤ τ(ω)

Xτ(ω) if t > τ(ω)

In the present scenario, the option (6) can be rewritten as

C(t, A) = EQ

[
e−

∫ T
t r(s) ds ·max {A(T ) − D(T ), 0} · 1{τ>T }

∣∣∣∣ Ft

]
(26)

= EQ

[
e−

∫ T
t r(s) ds · (A(T ) − D(T )) · 1{τ>T }

∣∣∣∣ Ft

]

because if the asset value is below the value of the debt at maturity, i.e. A(T ) − D(T ) < 0, the indicator function 1{τ>T }
with τ = inf {t′ : A(t′) < D(t′)} already is zero. Thus, taking the maximum becomes redundant.

Now define

Xt = X(t) := Ã(t) − D̃(t) (27)

with the discounted processes

Ã(t) := e−
∫ t

0
r(s) dsA(t)

D̃(t) := e−
∫ t

0
r(s) dsD(t)

for assets and debt. As A(t) and D(t) are continuous Xt is continuous, and thus, Xt∧τ is continuous as well, in particular for

t = τ. As a tradable underlying Ã(t) can be assumed a Q-martingale. Therefore, Xt is a martingale. The stopped process

is

Xt∧τ(ω) =

{
Ã(t) − D̃(t) if t ≤ τ(ω)

0 if t > τ(ω)

=
(
Ã(t) − D̃(t)

)
· 1{τ>t}

Using the stopped process, the option price (27) is:

C(t, A) = EQ

[
e−

∫ T
t r(s) ds · (A(T ) − D(T )) · 1{τ>T }

∣∣∣∣ Ft

]

= e
∫ t

0
r(s) ds · EQ

[(
Ã(T ) − D̃(T )

)
· 1{τ>T }

∣∣∣∣ Ft

]

= e
∫ t

0
r(s) ds · EQ [XT∧τ | Ft]

=
(25)

e
∫ t

0
r(s) ds · Xt∧τ

= e
∫ t

0
r(s) ds ·

(
Ã(t) − D̃(t)

)
· 1{τ>t}

= (A(t) − D(t)) · 1{τ>t} (28)

Given that the company didn’t default up to time t, i.e. 1{τ>t} = 1,

C(t, A) = A(t) − D(t). (29)

Definition 5.4 (α-mixing) Let X be a stochastic process (which is a sequence of random variables {Xk}k∈Z) on a probability

space (Ω, F , Q) and define

F B
A := σ (Xk, k ∈ [A, B])
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for −∞ ≤ A ≤ B ≤ ∞. σ(E) denotes the generated σ-algebra with generator E.

Furthermore,

α(n) := sup
j∈Z
α

(
F j
−∞, F∞j+n

)
.

with

α (F1, F2) := sup
E1∈F1, E2∈F2

|Q(E1 ∩ E2) −Q(E1) ·Q(E2)|

The process X is α-mixing, if

α(n)
n→∞−→ 0

Proof. (Lemma 2.1) The stochastic differential equation (11) can be re-written as:

Y(t) = y0 +

∫ t

0

μ − v(s)

2
ds +

∫ t

0

√
v(s)dZ(s)

Therefore,

Y(i�) − Y((i − 1)�) =

i�∫
(i−1)�

μ − v(s)

2
ds +

i�∫
(i−1)�

√
v(s)dZ(s)

= μ � −
i�∫

(i−1)�

v(s)

2
ds +

i�∫
(i−1)�

√
v(s)dZ(s)

and

Y(i�) − Y((i − 1)�)√� = μ
√� − 1√�

i�∫
(i−1)�

v(s)

2
ds +

1√�

i�∫
(i−1)�

√
v(s)dZ(s)

=

⎛⎜⎜⎜⎜⎝μ − V(i)
2

⎞⎟⎟⎟⎟⎠ · √� + 1√�

i�∫
(i−1)�

√
v(s)dZ(s)

Proof. (Proposition 2.2) The proof of this proposition works along Sections 3 and 4 of Genon-Catalot (2000). According

to them, the volatility process v which is characterized by (2) is α-mixing if the following conditions hold, as shown in

detail in the example in their Section 4.2:

κv > 0 (30)

κvv∞ ≥ ε2
v

2
(31)

If this is the case, due to Proposition 3.2 in Genon-Catalot (2000) (Note 4), v(t) in (2) is also α-mixing. It follows that:

1

n

n−2∑
i=0

f (R(i + 1), R(i + 2))
n→∞−→ E[E[ f (R(1), R(2))]] a.s. (32)

where f is chosen (Note 5) to be

f (A, B) = Ap · Bq

In particular (p, q) ∈ {(1, 0), (1, 1), (2, 0), (2, 1), (4, 0)}. Therefore, 1
n

n−1∑
i=0

R(i+ 1)
a.s.−→ E[R(1)], 1

n

n−2∑
i=0

R(i+ 1)R(i+ 2)
a.s.−→

E[R(1)R(2)], and so on.

E [R(1)] = E
[
E

[
R(1)|V

]]
=

(15)
E

[√�μ − 1

2

√�V(1)

]

=
√�μ − 1

2

√�E
[
V(1)

]
(33)
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E [R(1)R(2)] = E
[
E

[
R(1)R(2)|V

]]
= E

[
Cov(R(1), R(2)|V) + E

[
R(1)|V

]
· E

[
R(2)|V

]]
= E

[
0 +

(√�μ − 1

2

√�V(1)

) (√�μ − 1

2

√�V(2)

)]

= E

[
�μ2 − 1

2
� μV(1) − 1

2
� μV(2) +

1

4
� V(1)V(2)

]

= �μ2 − 1

2
� μE

[
V(1)

]
− 1

2
� μE

[
V(2)

]
+

1

4
� E

[
V(1)V(2)

]

= �μ2 − �μE
[
V(1)

]
+

1

4
� E

[
V(1)V(2)

]
(34)

E
[
R2(1)

]
= E

[
E

[
R2(1)|V

]]
= E

[
Var(R(1)|V) + E

[
R(1)|V

]2
]

= E

⎡⎢⎢⎢⎢⎢⎣V(1) +

(√�μ − 1

2

√�V(1)

)2
⎤⎥⎥⎥⎥⎥⎦

= E

[
V(1) + �μ2 − �μV(1) +

1

4
� V

2
(1)

]

= �μ2 − (�μ − 1)E
[
V(1)

]
+

1

4
� E

[
V

2
(1)

]
(35)

E
[
R(1)2R(2)

]
= E

[
E

[
R(1)2R(2)|V

]]
= E

[
Cov(R(1)2, R(2)|V) + E

[
R(1)2|V

]
· E

[
R(2)|V

]]
= E

[
E

[
R(1)2|V

]]
· E

[
E

[
R(2)|V

]]
= E

[
E

[
R(1)2|V

]]
· E

[
E

[
R(1)|V

]]
=

(33),(35)

(
�μ2 − (�μ − 1)E

[
V(1)

]
+

1

4
� E

[
V

2
(1)

])

·
(√�μ − 1

2

√�E
[
V(1)

])
(36)

For the derivation of E
[
R4(1)

]
it is used that if X is normally distributed, then the fourth moment of X is

E[X4] = E[X]4 + 6 · E[X]2 · Var(X) + 3 · Var(X)2 (37)

E[R4(1)] = E
[
E[R4(1)|V]

]

= E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣E[R(1)|V]4︸�������︷︷�������︸
(I)

+ 6 · E[R(1)|V]2 · Var(R(1)|V)︸������������������������������︷︷������������������������������︸
(II)

+ 3 · Var(R(1)|V)2︸��������������︷︷��������������︸
(III)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(
�μ2 − �μV(1) +

1

4
� V

2
(1)

)2

︸���������������������������������︷︷���������������������������������︸
(I)

+ 6

(
�μ2 − �μV(1) +

1

4
� V

2
(1)

)
V(1)

︸�����������������������������������������︷︷�����������������������������������������︸
(II)

+ 3V
2
(1)︸�︷︷�︸

(III)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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= E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣�
2μ4 + �2μ2V

2
(1) +

1

16
�2 V

4
(1) − 2 �2 μ3V(1) +

1

2
�2 μ2V

2
(1)︸��������������������������������������������������������������������������������︷︷��������������������������������������������������������������������������������︸

(I)

−1

2
�2 μV

3
(1)︸�����������︷︷�����������︸

(I)

+ 6 � μ2V(1) − 6 � μV2
(1) +

6

4
� V

3
(1)︸�������������������������������������������︷︷�������������������������������������������︸

(II)

+ 3V
2
(1)︸�︷︷�︸

(III)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≈ �2μ4 +

(
6 � μ2 − 2 �2 μ3

)
E

[
V(1)

]
+

(
3

2
�2 μ2 − 6 � μ + 3

)
E

[
V

2
(1)

]
(38)

Note that the influence of those terms containing E

[
V

3
(1)

]
or E

[
V

4
(1)

]
is negligible. Summing up, (33), (34), (35), (36)

and (38) prove (16), (17), (18), (19) and (20).

(21), (22) and (23) have already been calculated in Genon-Catalot (2000).
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Table 1. Numerical and analytical pricing of a DOC in the stochastic volatility model

zero Cnum C 95% confidence
D(t) payoffs mean analytical diff. sigma lower upper
0.00 0 99.936 100.000 –0.064 22.507 99.494 100.377

10.00 0 89.877 90.000 –0.123 22.749 89.431 90.323

20.00 0 79.845 80.000 –0.155 22.624 79.402 80.288

30.00 0 70.118 70.000 0.118 22.864 69.670 70.566

40.00 0 60.350 60.000 0.350 22.649 59.906 60.794

50.00 14 49.776 50.000 –0.224 22.026 49.345 50.208

60.00 288 40.240 40.000 0.240 22.888 39.792 40.689

70.00 1 291 29.737 30.000 –0.263 22.098 29.304 30.170

80.00 3 479 20.163 20.000 0.163 21.617 19.739 20.587

90.00 6 637 10.003 10.000 0.003 17.764 9.655 10.352

Table 2. Consolidated financial data of Merrill Lynch 2000–2008

*(in million USD) 2000 2001 2002 2003 2004 2005 2006 2007 2008
EBIT* 5 717 1 377 3 757 5 649 5 836 7 231 10 426 –12 831 –41 831

Net Revenues* 26 766 21 880 18 608 20 154 22 023 26 009 34 659 11 250 –12 593

Total Assets* 407 200 419 419 447 928 494 518 648 059 681 015 841 299 1 020 050 667 543

Total Liabilities* 386 182 396 716 422 395 464 197 616 689 645 415 802 261 988 118 647 540

Stockholders’ Equity* 18 304 20 008 22 875 27 651 31 370 35 600 39 038 31 932 20 003

Adjusted Leverage 13.2 13.1 11.1 11.7 13.9 11.6 13.1 17.7 13.3

Figure 1. Five simulated paths in the stochastic volatility model
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Figure 2. Performance of Merrill Lynch Stocks on NYSE (July 2001 – June 2007)

Figure 3. Observed equity returns of Merrill Lynch (July 2001 – June 2007) and simulated returns

Figure 4. Number of defaults out of 10 000 simulated time series for Merrill Lynch (July 2007)
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Figure 5. Survival probability for Merrill Lynch (July 2007)

Figure 6. Performance of Merrill Lynch Stocks on NYSE (January 2003 – December 2007)

Figure 7. Number of defaults out of 10 000 simulated time series for Merrill Lynch (January 2008)

Figure 8. Survival probability for Merrill Lynch (July 2007 and January 2008)
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Notes

Note 1. The basic idea of a barrier option is that the option expires if the underlying hits a barrier (“out options”) or

becomes exercisable only if such a barrier is reached (“in options”). A down-and-out call option therefore describes a call

option which expires if the underlying falls below a certain barrier. Thus, barrier options are path-dependent.

Note 2. In order to accurately fit the parameters of the volatility process which is not directly observable, we need

sufficiently many data points. Thus, daily data is used in the example.

Note 3. The adjusted leverage ratio is defined in the annual reports as “assets reduced by securities financing transactions

and securities received as collateral less trading liabilities net of derivative contracts and segregated cash and securities

and separate accounts assets, [...] divided by equity capital.”

Note 4. Although it is not stated in the proof of that proposition, it may be noted that the basic for this finding has already

been laid by Rosenblatt (1956).

Note 5. The Proposition in Genon-Catalot (2000) deals with a more general class of functions.
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