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Abstract

This paper proposes a method to price spread options on stochasti-
cally correlated underlying assets. Therefore it provides a more realis-
tic approach towards correlation structure. We generalize a constant
correlation tree model developed by Hull (2002) and extend it by the
notion of stochastic correlation. The resulting tree model is recom-
bining and easy to implement. Moreover, the numerical convergence
of our model is very fast. Our sensitivity analysis with respect to the
stochastic correlation parameters shows that the constant correlation
model systematically overprices spread options on two stochastically
correlated underlying assets. Furthermore, we use our model to derive
hedging parameters for the correlation of a spread option and show
that the constant correlation model also overprices the hedging pa-
rameters.

Key words: stochastic correlation, spread options, pricing, Greeks, bi-
nomial tree, trinomial tree

JEL classification: G13, C63
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1 Introduction

A spread option is a derivative on the difference of two underlying assets with
a terminal payoff of the form [S1(T )− S2(T )−K]+, where S1(T ) and S2(T )
denote the values of the underlying assets in T and K the exercise price.
The main challenge in pricing spread options lies in the lack of knowledge
about the distribution of the difference between two non-trivially correlated
stochastic processes (see Dempster and Hong (2000)). Among the differ-
ent approaches to spread option pricing is the arithmetic Brownian motion
model, in which the prices of the underlyings as well as the spread are mod-
eled by Brownian motions with constant correlations (see Poitras (1998)).
This setting allows a closed form solution but does not prevent negative
values for the underlyings. Other approaches like Carmona and Durrleman
(2003), Pearson (1995) or Shimko (1994) model the underlying assets as ge-
ometric Brownian motions assuming constant correlation. In a recent paper,
Dempster and Hong (2000), introduces a reasonably fast numerical method
to price these derivatives under a framework of stochastic volatility. They
play with the idea of stochastic correlation but in general, no publications, to
the best of our knowledge, has introduced a stochastic covariance structure
for the underlying assets in their pricing models.

In plain vanilla option pricing the assumptions of the Black-Scholes model
on volatility have been relaxed by works of Hull and White (1987, 1988),
Stein and Stein (1991), Heston (1993) and Shu and Zhang (2000). How-
ever, so far the correlation structure has been hardly addressed even though
there are many papers which find evidence for stochastically changing cor-
relations. Among more recent papers Ramchand and Susmel (1998) use a
switching ARCH technique to find evidence for differences in correlations
across variance regimes. Ball and Torous (2000) show for their data from
international stock markets that the estimated correlation structure is dy-
namically changing over time. Before, Makridakis and Wheelwright (1974)
found that international correlations are unstable over time and Kaplanis
(1988) rejected the null hypothesis of constant correlations comparing ma-
trices of monthly returns of ten markets. But also within a single market
correlations seem to change stochastically, which can be seen from the corre-
lations computed for a 50 days time window on the time series of IBM, GM
and Cisco stocks from 1986 to 2006 (see Figure 1). The stochastic nature is
evident but, as expained before, so far in literature there are only impulses
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Figure 1: Structure of the correlations for a window of 50 days

and suggestions by Dempster and Hong (2000) and Dupire (1993) how to
handle stochastic correlation.
In this paper we want to relax the assumption of constant correlation most
of the existing literature concerning spread option pricing makes. We price
spread options on stochastically correlated underlying assets using a bivariate
binomial tree model. The tree model generalizes a constant correlation tree
model developed by Hull (2002) and extends it by the notion of stochastic cor-
relation. Hull’s constant correlation tree model does not impose any restric-
tions on the correlation structure which eases the introduction of stochastic
correlation. The advantage of the Hull method is that the tree is recombining
because the increments of the up and down jumps of the singular assets are
independent from the correlation structure. Thus, despite of the introduction
of stochastic correlation, our method is easy to implement and the numerical
convergence is very speedy. This stochastic correlation model allows for a
more realistic approach towards correlation structure. Our sensitivity analy-
sis with respect to the stochastic correlation parameters shows that the Hull
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constant correlation model systematically overprices spread options on two
stochastically correlated underlying assets. Furthermore, we provide more
realistic hedging parameters for the correlation of a spread option priced
with our method.
We propose a structure for the underlying processes in Section 2. In Section
3 the bivariate binomial tree model for constant correlation is derived in
detail. Section 4 describes the numerical approximation of the stochastic
correlation using trinomial trees. We combine the numerical approximation
of the underlyings and the stochastic correlation in Section 5. Section 6
analyzes the sensitivity of the price of the spread option with respect to the
parameters of the stochastic correlation process and provides the hedging
parameters for the spread option. We will conclude in Section 7.

2 Underlying Processes

To model the correlation we propose a transformation y(t) of the correlation,
which maps its distribution from [−1; 1] to (−∞,∞).1 We found that the
real correlation data under this transformation followed a mean reverting
process. The system of processes is defined on a filtered probability space
(Ω,F , Q̃, F) where F0 contains all subsets of the (Q̃−) null sets of F and F is
right-continuous. As we assume the market to be complete the processes are
defined under the risk neutral measure Q̃. We propose the following system
of underlying processes:

dSi = Sirdt + SiσidWi for i ∈ {1, 2} (1)

ρ(y) = 1− 2 exp(− exp(yt)) (2)

dy = a(b− yt)dt + cdZ, (3)

where (4)

E[dW1dW2|Ft] = ρ(t)dt, (5)

E[dWidZ] = 0. (6)

Si are the prices of the two stocks, σi, r, a, b and, c are fixed constants, and dW
and dZ are Wiener processes. dW and dZ are independent. The correlation

1We applied several transformations to the data. The here proposed transformation
fitted the data best in terms of deviation from the model assumptions of gaussianity for
y(t).
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is governed by an arithmetic Ornstein-Uhlenbeck process, with a tendency
to revert back to a long-run average level of b.

3 Binomial Tree Model for two Assets with

Constant Correlation

For the construction of the model with constant correlation, the assets are
assumed to follow a geometric Brownian motion with constant drift and
volatility, dSi = Siµidt + SiσidWi, i ∈ {1, 2} (see (1)).
Therefore Si(t) = Si(0)exp(r − 1

2
σ2

i )t + σiWi(t). The constant correlation is
defined by E[dW1dW2|Ft] = ρdt. For the binomial approximation the lifetime
of the option is divided in n = T

∆t
equal time steps, where ∆t is the length

of one time step. It is assumed that both assets can jump to two different
values at each time step: The assets can increase after one time step by ui

(uj) with probability pi (pj) or fall by di (dj) with 1−pi (1−pj) respectively.
Thus, if S1(t) and S2(t) are the values of the two assets at time step t then
the values of S1(t + 1) and S2(t + 1) can be any of the combinations

u1S1 u2S2 with probability pa

u1S1 d2S2 with probability pb

d1S1 u2S2 with probability pc

d1S1 d2S2 with probability pd,

with

pa + pb + pc + pd = 1 (7)

pa + pb = p1 (8)

pd + pc = 1− p1 (9)

pb + pd = 1− p2 (10)

pa + pc = p2 (11)

The nodes in the tree are denoted by (i, j, t), where i and j indicate the
number of upwards moves of the first and second asset respectively and t
the time (t∆t) that has passed since t = 0. Thus, in a recombining tree
the possible number of combinations of the stock prices after a jump at
time t is (t + 1)2. This interrelationship between the number of time steps
and combinations ensures that the numerical algorithm is not exponentially
dependent in time.
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Proposition 1. (Bidimensional binomial approximation)
The conditions for the Bidimensional binomial model are given by

er∆t = u1p1 + (1− p1)d1 (12)

er∆t = u2p2 + (1− p2)d2 (13)

er∆t(u1 + d1)− u1d1 − e2r∆t = σ2
1∆t (14)

er∆t(u2 + d2)− u2d2 − e2r∆t = σ2
2∆t (15)

u1u2pa + u1d2pb + d1u2pc

+ d1d2pd − (u1p1 + (1− p1)d1)(u2p2 + (1− p2)d2) = σ1σ2ρ∆t.
(16)

For a proof see Appendix (A).

Proposition 2.
The correlation ρ is restricted by the following conditions:

(p1p2 − 1)(er∆t − d1)(d2 − er∆t)

σ1σ2p1p2∆t
≤ ρ ≤ (er∆t − d1)(d2 − er∆t)

σ1σ2∆t

p1(p2 − 1)(er∆t − d1)(d2 − er∆t)

σ1σ2p1p2∆t
≤ ρ ≤ (1− p1(1− p2))(e

r∆t − d1)(d2 − er∆t)

p1p2σ1σ2∆t

p2(1− p1)(e
r∆t − d1)(d2 − er∆t)

σ1σ2p1p2∆t
≤ ρ ≤ (1− p2(1− p1))(e

r∆t − d1)(d2 − er∆t)

p1p2σ1σ2∆t

((1− p1)(1− p2)− 1)(er∆t − d1)(d2 − er∆t)

σ1σ2p1p2∆t
≤ ρ ≤ (1− p1)(1− p2)(e

r∆t − d1)(d2 − er∆t)

p1p2σ1σ2∆t

For a proof see Appendix (B).

If the Cox Ross Rubinstein model (1979) is used the correlation has to be
restricted to a proper subset of the interval [−1, 1].2 In the following, we
choose pi = 0.5 as stated in the following proposition.

Proposition 3. If pi = 0.5, the correlations are not constrained.

2The Cox Ross Rubinstein one-dimensional tree model (1979) specifies ui = eσi

√
∆t,
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Proof.
From Equations (12) and (13) we get

2er∆t = u1 + d1, 2er∆t = u1 + d1. (17)

Equation (14) reduces to

u2
i − 2er∆tui + e2r∆t − σ2

i ∆t = 0.

This is solved by

ui = er∆t + σi

√
∆t, di = er∆t − σi

√
∆t, i ∈ {1, 2} . (18)

Substituting Equations (18) in (42) it can be shown that

pa =
1

4
+

1

4
ρ, pb =

1

4
− 1

4
ρ, pc =

1

4
− 1

4
ρ, pd =

1

4
+

1

4
ρ (19)

and it follows that the probabilities are positive for −1 ≤ ρ ≤ 1.

4 Numerical Implementation of the Mean-

reverting Process

The process (3) is implemented using the trinomial tree suggested by Hull
and White (1990). In the following, nodes are denoted by (l, t), where l is
the number of upwards movements, i.e. the value y(l, t) = y(0) + l∆y, and t
indicates the number of time steps passed since t = 0. For the implementation
of (3) the three branching methods illustrated in Figures 2-4 are applied,
where κ = l, κ = l + 1 and κ = l − 1 respectively.

di = e−σi

√
∆t, pi = 1

2 + 1
2

r
σi

√
∆t. In this case ρ is restricted by

pa : −4p1p2 ≤ ρ ≤ 4(1− p1p2)
pb : 4(p1(1− p2)− 1) ≤ ρ ≤ 4p1(1− p2)
pc : 4(p2(1− p1)− 1) ≤ ρ ≤ 4p2(1− p1)
pd : −4(1− p1)(1− p2) ≤ ρ ≤ 4(1− (1− p1)(1− p2))
where

pi =
1
2

+
1
2

r

σi

√
∆t.
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The probabilities are derived by matching the first two moments to the con-
tinuous distribution (see Appendix C).3

pl,κ+1 =
c2∆t

2(∆y)2
+

η2

2(∆y)2
+

η

2∆y
(20)

pl,κ = 1− c2∆t

(∆y)2
− η2

(∆y)2
(21)

pl,κ−1 =
c2∆t

2(∆y)2
+

η2

2(∆y)2
− η

2∆y
, (22)

where

η = µ(l, t)∆t + (l − κ)∆y,

µ(l, t) = a(b− y(l, t))

For a proof see Hull and White (1990). When ∆y is set to c
√

3∆t the
following dynamic rules for the choice of κ can be implemented to ensure
positive probabilities (see Appendix D):

κ =


l + 1 if µ(l,t)∆t

∆y
≥

√
2
3

l if −
√

2
3

< µ(l,t)∆t
∆y

<
√

2
3

l − 1 if µ(l,t)∆t
∆y

≤ −
√

2
3

(23)

These dynamic rules of choice for κ imply minimum and maximum values
for y(l, t):

−
√

2

3
≤ a(b−y(l, t))

∆t

∆y
≤

√
2

3
⇔ ymin = b−

√
2

3

∆y

a∆t
≤ y(l, t) ≤ b+

√
2

3

∆y

a∆t
= ymax

3The probabilities could also be derived by converting the underlying differential equa-
tion into a set of difference equations by the explicit finite difference method. In this case
the η2 terms can be skipped. However, the procedure with the quadratic terms ensured
better numerical convergence when we tested it.
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The branching method is changed to κ = l − 1 at a node (n, t), where n is
the largest integer with y = y(0) + n∆y ≤ ymax and to κ = l + 1 at a node
(m, t), where m is the smallest integer with y = y(0) + m∆y ≥ ymin.
As y(l, t) has a range of (−∞,∞) we impose the following restrictions on the
product ab:

ymin = b−
√

2

3

∆y

a∆t
<< 0 ⇔

√
2

c√
∆t

>> ab (24)

ymax = b +

√
2

3

∆y

a∆t
>> 0 ⇔ −

√
2

c√
∆t

<< ab (25)

5 Binomial Tree Model for two Assets with

Stochastic Correlation

To approximate the system proposed in Section 2 we combine the two tree
models introduced in Sections 3 and 4. The nodes in the combined tree
are denoted by (i, j, l, t), where i and j indicate the number of up or down
moves of the first and the second asset respectively as well as l specifies
the level of the correlation that influences the probability structure of the
movements of the assets in t + 1. As the correlations are not constrained in
the binomial tree model in Section 3 the transformation (2) and the process
for the transformation (3) of the stochastic correlation do not have to be
restricted and the tree approximations for the processes of two constantly
correlated assets and for the stochastic correlation can be combined without
any restriction. The two trees are arranged successively in such way that the
correlations ρl,t resulting from the approximation of the stochastic correlation
in time step t have an impact on the probabilities for an up or down jump
of the assets in t + 1. The probabilities derived for the movements of the
assets (19) also apply in the case of stochastic correlation. Furthermore, as
we assume the Brownian motions of the underlying processes of the assets
and of the transform of the correlation to be independent, their probabilities
can be simply multiplied to obtain the joint probability. Thus, a particular
node branches in 12 different nodes in the next time step.
The nodes and their probabilities are specified in Table 1. The first column
encloses all 12 possible branches from a single node (i, j, l, t), while the second
column provides the probability of getting to the particular node as the
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product of px,y and pl,y,t (where x ∈ [a, b, c, d] and y ∈ [l − 1, l, l + 1]). The
structure of the tree is illustrated in Figure 5, where the matrices in the
second part of the Figure describe the possible values of S1 and S2.

Table 1: Nodes and Probabilities of the combined tree

Nodes Probability
(i + 1, j + 1, l + 1, t + 1) pa,l+1 · pl,l+1,t

(i + 1, j − 1, l + 1, t + 1) pb,l+1 · pl,l+1,t

(i− 1, j + 1, l + 1, t + 1) pc,l+1 · pl,l+1,t

(i− 1, j − 1, l + 1, t + 1) pd,l+1 · pl,l+1,t

(i + 1, j + 1, l, t + 1) pa,l · pl,l,t

(i + 1, j − 1, l, t + 1) pb,l · pl,l,t

(i− 1, j + 1, l, t + 1) pc,l · pl,l,t

(i− 1, j − 1, l, t + 1) pd,l · pl,l,t

(i + 1, j + 1, l − 1, t + 1) pa,l−1 · pl,l−1,t

(i + 1, j − 1, l − 1, t + 1) pb,l−1 · pl,l−1,t

(i− 1, j + 1, l − 1, t + 1) pc,l−1 · pl,l−1,t

(i− 1, j − 1, l − 1, t + 1) pd,l−1 · pl,l−1,t

6 Sensitivity Analysis and Comparison to the

Hull two-dimensional constant correlation

Model

Pricing a spread option in this framework involves a considerable number
of input parameters. In the following, we want to stress on the influence
of the parameters of the stochastic correlation on the price of a spread op-
tion with a payoff max(S1−S2−K, 0). We define the following basic scenario:

Basic Scenario: r = 0.04, Maturity = 1
year, ∆t = 1

n
, n = Number of Time Steps,

S1
0 = 1, S2

0 = 1, K = 0, σ1 = 0.3, σ2 = 0.13, ρ(t = 0) = 0, a=1, b
= ln(ln(2)) (equivalent to ρ = 0), c = 0.2

Furthermore, we compare our Stochastic Correlation Model (SC-Model) to
the Hull two-dimensional constant correlation model and show that the Hull
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Figure 5: Structure of the combined tree
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Figure 6: Effect of Varying
the Number of computational
Time Steps on the Value of
the Spread Option in the SC-
Model

Figure 7: Effect of Varying
the Number of computational
Time Steps on the Estimated
Errors in the SC-Model

constant Correlation Model (CC-Model) overprices the spread option and
the correlation hedge parameter in the case of stochastic correlation.

6.1 Numerical Convergence

We compute the value of the option varying the number of time steps n, from
n = 1 to 70, in the case of stochastic and constant correlation. An estimate
for the error is calculated in both cases by subtracting the values found for
the different time steps from the value computed with n = 70. Note in Figure
6 that the value of the spread option with stochastic correlation converges
quickly. The corresponding estimated errors are illustrated in Figure 7. One
can see that from about 30 time steps the price can be indicated with an
accuracy of 4 digitals. The CC-Model does not converge considerably quicker
than the SC-Model, which is shown by the estimated errors for this model
in Figure 8. Subtracting the estimated errors from each other allows us to
state that from 30 time steps the performance of both models considering
computational convergence is equal (see Figure 9).
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Figure 8: Effect of Varying
the Number of computational
Time Steps on the Estimated
Errors in the CC-Model

Figure 9: Difference between
the Estimated Errors

6.2 Correlation Parameters

The correlation structure between the stocks affects the price of a spread
option on these substantially. This can already be demonstrated for the CC-
Model. In order to show the general relationship between correlation and the
price of the option we analyze the effect of an increase in correlation on the
price in the CC-Model. In Figure 10 the inverse relationship is illustrated: An
increase in the correlation results in a lower spread option price. Furthermore,
the slightly concave graph indicates that higher correlations have a bigger
impact on the price.
In a next step we want to break down the influence of the parameters of y on
the spread option value in the SC-Model and compare this to the CC-Model.

Sensitivity of the Price with respect to the Volatility
In the SC-Model we set the mean-reverting level as well as the value of y(0)
in t = 0 to ln(ln(2)), which is equivalent to ρ(0) = 0, and vary the volatility
of y, i.e. c. The price of the spread option decreases with a rise in the volatil-
ity of the correlation (see Figure 11). Since higher correlations have a bigger
impact on the price, as we have seen before, an increase of the volatility of
the mean reverting stochastic correlation causes a decrease of the prices of
the derivative. In order to compare these results to the equivalent CC-model
we set the correlation ρ ≡ 0. The comparison of the two graphs shows that

14



Figure 10: Effect of Varying Correlation on the Value of a Spread Option

the CC-Model systematically overestimates the price of the option as the
volatility of the correlation increases (see Figure 11).

Sensitivity of the Price with respect to the Mean-reverting Level
Analyzing the impact of the mean-reverting level on the price of the spread
option we find a similar effect. We vary b from ln(ln(4

3
)), which corresponds

to a mean-reverting level for ρ = −0.5, to ln(ln(4)) (equivalent to a mean-
reverting level for ρ = 0.5) and set ρ(0) to the respective mean-reverting level
value. All other parameters are left constant. Figure 12 shows a negative
interrelation between the values of the mean-reverting level and the values
of the spread options. The higher the long-term mean of the correlation the
less probable become big spreads between the two shares and therefore the
value of the spread option has to fall with an increase in the mean-reverting
level.
In order to compare the results of the SC-Model to the CC-Model we com-

pute the values of the CC-Model assuming that the constant correlation ρ is
set to the mean-reverting level for ρt in the SC-Model. Figure 12 visualizes
that the CC-Model overstates the option values for negative long-term mean
values the most, i.e. higher and lower correlations than the mean-reverting
level are possible. As the lowering effect of the highly positive correlations
is bigger (see Figure 10) the prices of the SC-Model are lower than those
of the CC-Model. This effect is, of course, not as distinct for very positive
mean-reverting levels.
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Figure 11: Effect of Varying the Volatility of yt on the Value of the Spread
Option

Figure 12: Effect of Varying the Value of the Mean-reverting Level on the
Value of the Spread Option
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6.3 Hedging Parameter

For the basic scenario we want to compute the hedging parameters ∆i =
δV

δSi(0)
, νi = δV

δσi
and δV

δρ
, i ∈ {1, 2}, in t = 0, where V is the value of the

spread option, which is among others dependent on Si, σi and ρt. V (Si(0))
(V (σ), V (ρ)) we denote the value of the option varying Si(0) (σi and ρ repec-
tively). In Table 2 we provide these hedge ratios for sample values of S1 in
t = 0.

Table 2: Hedge Ratios for chosen values

Hedging Parameter In the Money At the Money Out of the Money
S1 = 1.6 S1 = 1 S1 = 0.4

∆1 0.97944 0.62217 0.012024
∆2 -0.93069 -0.37846 -0.00088247
ν1 0.14303 0.3677 0.011437
ν2 0.066843 0.19963 0.0043561
δV
δρ

-0.0076071 -0.030068 -0.00030971

Delta Hedging Parameters
We compute the ∆ sensitivity of the spread option by locally altering the
value of S1, S2 in t = 0 respectively, i.e.

Delta Hedge Ratio =
V (Si(0) + h)− V (Si(0))

h
.

Where h is a small number. Figure 13 shows that the hedging parameter
rises exponentially with an increase in S1 for out of the money options and
with a decreasing radient for in the money options and thus, it corresponds
to the ∆ sensitivity of a plain vanilla call option. Figure 14 exhibits the
exact opposite behavior: It falls exponentially for out of the money options
and with a decreasing radient for in the money options. This appearance is
due to the payoff structure of the spread option in T . Not surprisingly, the
results for ∆i are exactly the same in the constant correlation case as the
derivative δV

δSi(0)
is not influenced by the correlation structure.

Vega Hedging Parameters
We compute the Vega hedging parameter of the spread option by locally
altering the value of σ1, σ2 in t = 0 respectively, i.e.

Vega Hedge Ratio =
V (σi + h)− V (σi)

h
.
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Figure 13: ∆1 as a Function of
the Value of S1 in t0

Figure 14: ∆2 as a Function of
the Value of S1 in t0

Note that the sensitivity of the spread option with respect to the volatility
of the underlying assets increases for out of the money options approaching
the strike price, the sensitivity is the highest at the money and decreases in
the money (see Figures 15 and 16). These results are in accordance with
plain vanilla options, where the influence of the volatility is the biggest for
options close at the money and at the money. As before the findings do not
differ from those we get for the Vega hedging parameter using the CC-Model
because we model the correlation independent from the variance structure of
the underlying assets.

Correlation Hedging Parameters
We approximate the correlation hedging parameter δV

δρ
by

V (ρ(0) + h)− V (ρ(0))

h
,

i.e. we alter the correlation in t = 0, leaving the long-term mean constant.
Figure 17 reflects the negative relationship between correlation and the value
of the spread option that we have already pointed out earlier. The hedging
parameter falls for out of the money options and increases in the money.
The sensitivity with respect to the correlation is the highest at the money.
To compute the respective hedging parameter for the CC-Model we variate
the constant correlation. The hedge parameter computed in the CC-Model
exhibits similar features (see Figure 17) as in the SC-Model. However, the
CC-Model overestimates the sensitivity with respect to changes in the un-
derlying correlation structure as it does not take into account the long-term
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Figure 15: ν1 as a Function of
the Value of S1 in t0

Figure 16: ν2 as a Function of
the Value of S1 in t0

mean. The correlation can be hedged with another instrument involving cor-
relation or with another spread option on the same stocks but with different
maturities.

7 Summary and Conclusion

We have developed and implemented a tree model to price spread options on
underlyings which are stochastically correlated based on a system of stochas-
tic processes with a mean-reverting process for the stochastic correlation.
This model relaxes the constant correlation assumption in the existing liter-
ature. The tree model converges quickly and the value of the spread option
can be indicated with four digitals computing more than 30 time steps. Thus,
the convergence of the stochastic correlation model is as fast as the constant
correlation tree model proposed by Hull (2002). Our framework allows us to
examine several effects of a mean-reverting stochastic correlation. We show
that the equivalent constant correlation model overestimates the value of a
spread option as well as the hedging parameter for a correlation hedge.
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Figure 17: The Hedging Parameter of the Correlation as a Function of the
Value of S1 in t0

A Proof of Proposition 1

Basic Equations for the bidimensional binomial approximation:

p1S1u1 + (1− p1)S1d1 = Ser∆t (26)

p2S2u2 + (1− p2)S2d2 = Ser∆t (27)

(u1 − 1)2p1 + (1− p1)(d1 − 1)2 − (p1(u1 − 1)

+(1− p1)(d1 − 1))2 = σ2
1∆t (28)

(u2 − 1)2p2 + (1− p2)(d2 − 1)2 − (p2(u2 − 1)

+(1− p2)(d2 − 1))2 = σ2
2∆t (29)

(u1 − 1)(u2 − 1)pa + (u1 − 1)(d2 − 1)pb

+(d1 − 1)(u2 − 1)pc + (d1 − 1)(d2 − 1)pd

−(u1 − 1)p1 + (d1 − 1)(1− p1)(u2 − 1)p2

+(d2 − 1)(1− p2) = σ1σ2ρ∆t (30)

pa + pb + pc + pd = 1 (31)

pa + pb = p1 (32)

pd + pc = 1− p1 (33)

pb + pd = 1− p2 (34)

pa + pc = p2 (35)

• Equation (26) and Equation (27): The expectation of St in the tree
has to meet the expectation of St in continuous time: E[St] = S(0)ert.
The approximation is exact in this case.
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• Equation (28) and Equation (29): V ar[St] = S2
0e

2rt(eσ2t−1). However,
for reasons of simplification we use the fact that V ar[dS

S
] = σ2dt, which

implies4

V ar[
∆S

S
] = σ2∆t

• Equation (30): The same simplification is used for the covariance and
the correlation respectively.

• Equation (31): The probabilities of the four branches have to sum up
to 1.

• Equations (32), (33), (34), (35) are derived from the marginal proba-
bilities of a single asset.

B Proof of Proposition 2

Reformulate Equation (16)

u1u2(pa − p1p2) + u1d2(pb − p1(1− p2))
+d1u2(pc − (1− p1)p2)+
d1d2(pd − (1− p1)(1− p2))− σ1σ2ρ∆t = 0

(36)

From Equations (7) to (11) we get:

pa = p1 − pb (37)

pb free (38)

pc = (1− p1)− pd = −p1 + p2 + pb (39)

pd = (1− p2)− pb. (40)

Substituting these expressions in Equation (36) and solving for pb leads to

pb = p1(1− p2) +
σ1σ2ρ∆t

(d2 − u2)(u1 − d1)
. (41)

4This simplification has already been used by Hull (2002).
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Substituting Equation (41) in Equations (37, 39, 40) we get

pa = p1p2 −
σ1σ2ρ∆t

(d2 − u2)(u1 − d1)

pc = p2(1− p1) +
σ1σ2ρ∆t

(d2 − u2)(u1 − d1)
(42)

pd = (1− p1)(1− p2)−
σ1σ2ρ∆t

(d2 − u2)(u1 − d1)

It follows from Equation (12) for u1, d1 and for u2 and d2 respectively:

u1 − d1 =
er∆t − d1

p1

, u2 − d2 =
er∆t − d2

p2

(43)

Substituting Equation (43) in Equation (42) we obtain

pa = p1p2 −
σ1σ2∆tp1p2ρ

(er∆t − d1)(d2 − er∆t)
(44)

pb = p1(1− p2) +
σ1σ2∆tp1p2ρ

(er∆t − d1)(d2 − er∆t)
(45)

pc = p2(1− p1) +
σ1σ2∆tp1p2ρ

(er∆t − d1)(d2 − er∆t)
(46)

pd = (1− p1)(1− p2)−
σ1σ2∆tp1p2ρ

(er∆t − d1)(d2 − er∆t)
(47)

Hence, ρ is restricted by the conditions for the probabilities (0 ≤ pi ≤ 1):

pa :

(p1p2 − 1)(er∆t − d1)(d2 − er∆t)

σ1σ2p1p2∆t
≤ ρ ≤ (er∆t − d1)(d2 − er∆t)

σ1σ2∆t

pb :

p1(p2 − 1)(er∆t − d1)(d2 − er∆t)

σ1σ2p1p2∆t
≤ ρ ≤ (1− p1(1− p2))(e

r∆t − d1)(d2 − er∆t)

p1p2σ1σ2∆t

pc :

p2(1− p1)(e
r∆t − d1)(d2 − er∆t)

σ1σ2p1p2∆t
≤ ρ ≤ (1− p2(1− p1))(e

r∆t − d1)(d2 − er∆t)

p1p2σ1σ2∆t

pd :

((1− p1)(1− p2)− 1)(er∆t − d1)(d2 − er∆t)

σ1σ2p1p2∆t
≤ ρ ≤ (1− p1)(1− p2)(e

r∆t − d1)(d2 − er∆t)

p1p2σ1σ2∆t
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C General Trinomial Tree Probabilities

In the trinomial tree the probabilities of y(l, t) moving to y(κ − 1, t), y(κ, t)
and y(κ+1, t) are chosen to match the first and second moments of the three
point-jump process of the change in y(l, t) to the continuous distribution.
Thus, the following equations must be satisfied:

pl,κ−1(κ− 1− l)∆y + pl,κ(κ− l)∆y + pl,κ+1(κ + 1− l)∆y = µ∆t (48)

pl,κ−1(κ− 1− l)2∆y2 + pl,κ(κ− l)2∆y2

+pl,κ+1(κ + 1− l)2∆y2 − (µ∆t)2 = c2∆t (49)

pl,κ−1 + pl,κ + pl,κ−1 = 1, (50)

where
µ = a(b− y).

It follows from (50)
pl,κ = 1− pl,κ−1 − pl,κ+1. (51)

Substituting Equation (51) in (48) and reformulating it we get (µ(l, t) := µ)

−pl,κ−1∆y + (κ− l)∆y + pl,κ+1∆y = µ∆t, (52)

which is equivalent to

pl,κ+1 =
µ∆t

∆y
− (κ− l) + pl,κ−1 (53)

Substituting Equations (51) and (53) in (49) we have

pl,κ−1(κ− 1− l)2(∆y)2+

(1− pl,κ−1 − µ∆t
∆y

+ (κ− l)− pl,κ−1)(κ− l)2(∆y)2

+(µ∆t
∆y

− (κ− l) + pl,κ−1)(κ + 1− l)2(∆y)2 = µ2(∆t)2 + c2∆t,

which is equivalent to

pl,κ−1 =
c2∆t

2(∆y)2
+

µ2(∆t)2 + 2(l − κ)∆yµ∆t + (l − κ)2(∆y)2

2(∆y)2

−µ∆t + (l − κ)∆y

2∆y
(54)
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With η = µ∆t + (l − κ)∆y

pl,κ−1 =
c2∆t

2(∆y)2
+

η2

2(∆y)2
− η

2∆y
.

Substituting Equation (54) in (53) we get

pl,κ+1 =
c2∆t

2(∆y)2
+

η2

2(∆y)2
+

η

2∆y
(55)

Substituting Equations (54) and (55) in (51) we obtain

pl,κ = 1− c2∆t

(∆y)2
− η2

(∆y)2
(56)

D Specific Choice of Tree Probabilities

As Hull and White do not provide the proof for this dynamic rule in their
paper the restrictions are shown for the example κ = l.
In the case of κ = l the probabilities are

pl,l+1 =
c2∆t

2(∆y)2
+

µ2(∆t)2

2(∆y)2
+

µ∆t

2∆y
(57)

pl,l = 1− c2∆t

(∆y)2
− µ2(∆t)2

(∆y)2
(58)

pl,l−1 =
c2∆t

2(∆y)2
+

µ2(∆t)2

2(∆y)2
− µ∆t

2∆y
(59)

To obtain positive probabilities, which are smaller than 1 we have to ensure
that Equations (57) to (59) are positive:

pl,l+1 = c2∆t
2(∆y)2

+ µ2(∆t)2

2(∆y)2
+ µ∆t

2∆y
≥ 0 ⇔ µ2(∆t)2+µ∆t∆y

c2∆t
≥ −1

Substituting c2∆t = 1
3
(∆y)2 results in:

µ2(∆t)2+µ∆t∆y
(∆y)2

≥ −1
3
⇔ (µ∆t

∆y
+ 1

2
)2 + 1

12
≥ 0,

which does not impose any constraints on the parameters.

pl,l = 1− c2∆t
(∆y)2

− µ2(∆t)2

(∆y)2
≥ 0 ⇔ −

√
2
3
≤ µ∆t

∆y
≤

√
2
3

pl,l−1 = c2∆t
2(∆y)2

+ µ2(∆t)2

2(∆y)2
− µ∆t

2∆y
≥ 0 ⇔ −(µ∆t

∆y
− 1

2
)2 − 1

12
≤ 0,
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which does not impose any constraints on the parameters.
Thus,

−
√

2

3
≤ µ∆t

∆y
≤

√
2

3
.

Equivalently, for k = l + 1

1−
√

2

3
≤ µ∆t

∆y
≤

√
2

3

and for k = l − 1

−
√

2

3
≤ µ∆t

∆y
≤ −1 +

√
2

3
.

Considering all three branching methods the following dynamic rules for the
choice of the parameter k can be derived:

k =


l + 1 if µ∆t

∆y
≥

√
2
3

l if −
√

2
3

< µ∆t
∆y

<
√

2
3

l − 1 if µ∆t
∆y

≤ −
√

2
3

(60)
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