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Abstract

On the basis of transaction data, this paper analyzes the strike pro…le of implied

volatilities of German DAX options for a time to expiration of 45 days. Using

WLS spline regressions over the sample period from 1995 to 1999, we estimate

a time series of smile characteristics, which we then try to attribute to economic

fundamentals. Their choice is motivated by common theoretical explanations of

the smile. The strike pattern almost exclusively appears as a “skew” rather than a

“smile”. We …nd that the dynamics of the smile pro…le can be accurately modelled

by a stationary AR(1) process. Market uncertainty, measured by volatility of

volatility, and liquidity e¤ects seem to play an important role in determining the

pattern of DAX implied volatilities across exercise prices.

JEL classi…cation: G10; G12; G13

Keywords: Implied volatility; DAX options; Smile; Option valuation

1 Introduction

During the last two decades the market for contingent claims has experienced rapid
growth and many innovative product creations. For valuing these instruments the Black-

Scholes (1973) model is often applied as a starting point. It assumes that the underlying
asset is traded on a frictionless market and its price follows a geometric Brownian motion
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with constant volatility. If this could be regarded as a valid description of reality, then
all options on the same asset should provide the same implied volatility.

As a matter of fact, the Black-Scholes conditions will never hold exactly. For example,
jumps in asset prices occur, volatility varies over time and trading activity incurs trans-

action costs. Therefore, practitioners commonly use di¤erent volatilities for di¤erent
strike prices and maturities in order to take account of deviations from the Black-Scholes
assumptions.1 Consequently, the implied volatility of an option is not necessarily equal

to the expected volatility of the underlying asset’s rate of return. It rather also re‡ects
determinants of the option’s value that are neglected in the Black-Scholes formula. The

implied volatility structure is just a convenient way of illustrating discrepancies between
market and Black-Scholes prices (see, e.g., Mayhew, 1995, p.14).

Following the …rst empirical studies prior to the October 1987 crash, which found higher
S&P 500-implied volatilities for deep in- and out-of-the-money options, the relationship

between implied volatilities and exercise prices is commonly designated as a “smile”
pattern. In this paper, if not stated otherwise, the term “smile” is used as a general

expression for the shape of the implied volatility pattern across exercise prices. It also
covers a “skew” or “sneer”, characterized by monotonically decreasing implied volatilities

when the exercise price rises relative to the index level.

Understanding the characteristics and determinants of the smile pattern is important for

pricing and hedging options. This is particularly relevant for instruments that provide
pure exposure to volatility alone, such as volatility swaps (Demeter… et al., 1999). The
implied volatility pro…le extracted from liquid standard options might be transferred to

illiquid exotic options. Here the pricing impact of the smile is often considerable (see,
e.g. Taleb, 1997).

In the US, the literal smile pro…le observed before the market crash in 19872 turned into a
monotonically decreasing function afterwards. The rate of decrease is lower for options

with longer time to maturity. In a recent empirical study Dumas/Fleming/Whaley
(1998) conclude that the volatility pro…le is not stable through time. As far as S&P 500

options are concerned, implied binomial or trinomial trees, developed by Derman/Kani
(1994a,1994b), Dupire (1994) and Rubinstein (1994), turned out to be unreliable and not

really useful for valuation and risk management. Which factors in detail are responsible

1 Hull (1997) denotes this practice as applying “tricks of trade” (p. 502).
2 See Galai (1983), Rubinstein (1985), Sheikh (1991), Heynen (1994).
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for changes in the smile pattern, is still an unresolved question.3

The empirical evidence from options markets outside the US tends to support a true

smile pro…le, at least for short maturities.4 For example, Pena/Rubio/Serna (1999) …nd
a consistent smile pattern in Spanish IBEX-35 index options throughout the sample

period from January 1994 to April 1996. They conclude that particularly transaction
costs and market uncertainty play a key role in explaining the dynamcis of the smile
pattern. At the German market Ripper/Günzel (1997) analyze the implied volatility

surface of DAX options using settlement prices over the years 1995 and 1996. They
estimate only one surface for the complete sample period and thus implicitly assume

that the smile pro…le and the term structure of implied volatilities are stable throughout
the two years under study. For short-lived options Ripper/Günzel report a U-shaped

pro…le across exercise prices, whereas options with a longer time to maturity of up to
three months show an almost linear decrease of implied volatilities when the strike rises.

Similar to the …ndings in the US, the rate of decrease is negatively related to the time
to expiration.

The objectives of this paper are twofold. First of all we aim at characterizing the
pro…le of DAX implied volatilites for a period ranging from 1995 to 1999. To our

knowledge, a survey of the dynamics of the smile pattern at the German market has not
yet been published.5 Secondly, we try to evaluate the explanatory power of variables

which represent potential determinants of changes in the smile pattern. In contrast to
Ripper/Günzel (1997) this study is based on all call and put prices. Each day we generate

a new estimate of the strike pattern of implied volatilities. This results in a time series
of smile characteristics which we then try to attribute to the selected determinants.

Many recent articles deal with valuation models relaxing the Black-Scholes conditions.

They usually focus on only one assumption, such as a constant volatility, which is
supposed to cause the observed pricing biases. In contrast to this popular approach

we try to detect the relative importance of various deviations from the Black-Scholes

3 For a more comprehensive overview over empirical research to test the Black-Scholes model see Hull
(1997), p. 507 ¤.

4 See, e.g., Gemmill (1986) for British options and Kemna (1989) for Dutch options.
5 Hermann (1997) calculates implied volatilities for DAX options from 1992 to 1997. Yet, in contrast

to our study Hermann focuses on nonparametric valuation models. The implied volatilities are
only reported as yearly averages of moneyness and time to maturity classes (p. 186 f.). Implied
Distributions of DAX options for the …rst half of 1994 are analyzed by Neumann/Schlag (1996).
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assumptions in the …rst step. This done, the factors in question could be useful in
developing a pricing model.

The paper is organized as follows. Section 2 reviews theoretical explanations of the smile
pattern. These form the basis of the choice of potential smile determinants. Section

3 presents the empirical analysis of the smile pro…le of German DAX options. Finally,
we try to explain its time variations in Section 4. The paper concludes with a brief
summary.

2 Theoretical Explanations for the Strike Pattern of
Implied Volatility

In general, smile patterns may be either due to market imperfections or to deviations
of the underlying asset’s price process from lognormality. Empirical research on stock

returns has accumulated convincing evidence for fat-tailed distributions, i.e. extremely
low or high returns have greater probability than assigned by the normal distribution

(leptokurtosis).6 Moreover, the underlying asset distribution often turns out to be asym-
metric. If it is positively skewed, there is more probability mass on the right side of the

distribution than on the left, and vice versa. Three explanations for these distributional
properties have been o¤ered (see, e.g., Gemmill, 1993, p. 113). In the …rst approach the

volatility is assumed to vary over time, either deterministically or stochastically. Der-
man/Kani (1994a,1994b), Dupire (1994) and Rubinstein (1994) were the …rst to model

volatility as a deterministic function of time and stock price. Their work has subse-
quently been extended by Andersen/Brotherton-Ratcli¤e (1998), Jackwerth (1997), and

Chriss (1996), among others. The unknown volatility function can be …tted to observed
option prices to obtain an implied price process for the underlying asset. The validity

of this approach depends on whether the implied process accurately matches the true
price evolution.

The stochastic volatility approach, suggested by Hull/White (1987), Heston (1993),
Stein/Stein (1991) and others, assumes that volatility itself follows a stochastic process.

This process can be correlated with the stock price. Di¤erent correlation coe¢cients
will result in di¤erent probability distributions and smile patterns. If volatility is un-

6 See, e.g., Campbell/Lo/MacKinlay (1997), p. 17, for the US and Eberlein/Keller/Prause (1998) for
Germany.
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correlated with the stock price, a true smile occurs whose degree depends on the other
parameters of the stochastic volatility model, especially the volatility of volatility. A

negative correlation coe¢cient spreads the left tail of the distribution and thus produces
a skew pattern. A positive correlation coe¢cient has the opposite e¤ect, i.e. it increases

the probability of high returns. A problem of stochastic volatility models is that un-
realistically high parameters are required in order to generate volatility smiles that are

consistent with those observed in option prices with short times to maturity (see, e.g.,
Andersen/Andreasen, 1999, p. 3; Das/Sundaram, 1999, p. 5). This is not the case for

long times to expiration.

The second explanation for implied volatility patterns refers to jumps in the asset price
process (e.g. Bates, 1996; Trautmann/Beinert, 1999). When jumps occur, the price pro-

cess is no longer continuous. Jumps have proved to be particularly useful for modelling
the crash risk, which has attained considerable attention since the stock market crash of

October 1987. It is often argued that the increased sensitivity of market participants to
the crash risk has contributed to the skew pattern in S&P options prevailing since 1987.

Whereas the e¤ect of stochastic volatility increases with longer time to maturity, the
impact of jumps diminishes. This is due to the fact that in long time periods positive

and negative jumps compensate each other. Therefore, jumps seem especially suitable
for modeling the steep implied volatility smile for short maturities.

Finally, it is possible that prices move continuously but not according to a geometric
Brownian motion. The true underlying distribution may thus be characterized by fat

tails and skewness, even if the volatility is constant and jumps do not occur. For
example, Eberlein/Keller/Prause (1998) propose to describe the terminal stock price

using a hyperbolic distribution. Analyzing …ve German stocks, the authors …nd that
the hyperbolic model accurately …ts the empirically observed returns.

Market frictions are another explanation for the smile pattern. Transaction costs, illiq-

uidity and other trading restrictions imply that a single arbitrage-free option price no
longer exists. Instead, there is a band of feasible prices.7 Since arbitrage is no longer

su¢cient to derive a de…nite option price, Longsta¤ (1995) proposes an “unrestricted
Black-Scholes model”, which does not impose the martingale restriction.8 In his study

7 Yet, Constantinides (1997) points out that transaction costs cannot fully explain the extent of the
volatility smile.

8 For an empirical test of this model on the German DAX options market, see Neumann/Schlag
(1996).
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of S&P 100 index options the suggested speci…cation is able to neutralize the pricing
bias with respect to the strike pro…le. Longsta¤ concludes “that transaction costs and

liquidity e¤ects play a major role in the valuation of index options” (p. 1093).

McMillan (1996) argues that the crash of 1987 lessened the supply of put option sellers,

whereas at the same time fund managers showed a higher demand for out-of-the-money
puts. Because hedging the risk exposure of written out-of-the-money puts turned out to
be expensive, higher prices for out-of-the-money puts were charged. This could partly

explain the observed skew pattern.

It is generally acknowledged that the in‡uences are interrelated, and no single explana-

tion completely captures all empirical biases in implied volatilities.

3 Data

In 1990 the o¢cial German derivatives market, Deutsche Terminbörse (DTB), was
founded. With the merger of DTB, now Eurex Deutschland, with the Swiss Options

and futures exchange SOFFEX in 1998, Eurex was created. From the very beginning
the market experienced rapid growth and is now the leading derivatives exchange world-

wide, with an average daily trading volume of 1,668,252 contracts as of November 1999
(see Deutsche Börse, 2000a).

Our database contains all reported transactions of options and futures on the German
stock index, DAX, traded on the DTB/Eurex over the period from January 1995 to

October 1999.9 With an average daily trading volume of 153,808 contracts as of Novem-
ber 1999, the DAX option (ODAX) is the most liquid Eurex index contract and ranks

among the top index options contracts in the world. The underlying of the option, the
DAX index, comprises the 30 largest and most actively traded German companies that

are listed at the Frankfurt Stock Exchange (see Deutsche Börse, 1999a). The DAX is a
capital-weighted performance index, i.e. dividends are reinvested. DAX options are cash

settled European-Style options which expire on the third Friday of the contract month
(see in the following Deutsche Börse, 2000b, pp. 56-59). At any point in time eight op-

tion maturities with lifetimes of up to two years are available: the three nearest calendar
months, the three following months of the cycle March-June-September-December and

the two following months of the cycle June-December. The minimum price movement

9 We are grateful to Eurex Deutschland for providing us with these data.
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is 0.1 of an index point. The futures contract on the DAX index is clearly associated
with the option contract, nevertheless, some di¤erences can be noted: the minimum

price movement amounts to half of an index point and the expiry months are only the
three nearest months within the cycle March-June-September-December. Trading hours

changed several times during our sample period, but both products were traded at least
from 9:30 a.m. to 4:00 p.m. Presently, trading takes place from 8:50 a.m. to 5:30 p.m.

To compute the implied volatility for each options trade, we apply the standard Black-

Scholes (1973) option pricing formula. The Black (1976) model, which could be regarded
as an alternative, presumes the existence of a liquid futures contract for each option’s

maturity. This condition is not met at the German futures market.

Apart from the option price and the strike, three parameters are required to compute

the implied volatilities: the time to expiration, the risk-free rate and the level of the
underlying index. Let t denote the trading day and TO the option’s expiration date. The

time to expiration (TO ¡ t) is measured in calendar days.10 ;11 Daily series of 1, 3, 6, and
12 months DM-LIBOR rates for the period from 1995 to 1998 and EURIBOR rates for

1999 serve as riskless interest rates r. The (TO ¡ t)-period interest rate is obtained by
linear interpolation between the available rates enclosing (TO ¡ t). The resulting value

is then converted to a continously compounded rate.12

Let n (n = 1; :::; N) be the trading minute of an options transaction.13 The underlying

index St;n on day t at minute n is derived from the current price Ft;n of the futures
contract most actively traded on that day. The maturity of this contract, which is
normally the nearest available, is denoted by TF . The value Ft;n(TF ) corresponds to the

average transaction price observed in the TF -futures contract in minute n on day t. To
obtain the corresponding index level we solve the theoretical futures pricing model (see

10 It is uncertain, whether volatility is related to trading or calendar days. The di¤erence between
calendar and trading days, expressed as a fraction of one year, is small except for very short-term
options (see e.g. Hull, 1997, p. 249). These are not considered in this paper.

11 In the calculations the time to maturity is measured as a proportion of 365 days per year.
12 The riskless rate r is dependent on day t and the investment horizon T . For ease of exposition, we

suppress these indices.
13 Since trading hours changed through time, N is time-dependent. To keep notation simple, we

suppress the time index.
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e.g. Hull, 1997, p. 51)14

Ft;n (TF ) = St;ner(TF¡t) (1)

for St;n. If no future is traded at minute n; we exclude all options transactions that took

place in this minute from our database. This procedure ensures simultaneous options
and underlying prices, i.e. their respective time stamps diverge by not more than one

minute.

For an option expiring in TO; Moneyness M is de…ned as

M =Mt;n(X) =
X

Ft;n (TO)
;

where Ft;n (TO) is the theoretical TO-futures price computed with (1) for a given St;n,
and X denotes the strike price of the option:15 An option is said to be at-the-money,

if M = 1: A call (put) is said to be in-the-money (out-of-the-money) for M < 1 and
out-of-the-money (in-the-money) for M > 1.

Moneyness

1.151.101.051.00.95.90

Im
pl

ie
d 

B
la

ck
-S

ch
ol

es
 V

ol
at

ili
ty

.3

.2

.1

0.0

Type

Puts

Calls

Moneyness

1.151.101.051.00.95.90

Im
pl

ie
d 

B
la

ck
-S

ch
ol

es
 V

ol
at

ili
ty

.3

.2

.1

0.0

Type

Puts

Calls

Figure 1: Left graph: implied call and put volatilities for di¤erent degrees of moneyness on

March 27, 1995 (time to maturity: 25 calendar days). Right graph: implied volatilities after

increasing the underlying index level by approximately 8 points.

Put-call-parity requires that the implied call volatilities do not systematically deviate

from the implied put volatilities with the same degree of moneyness. However, on a

14 Using the futures-based implied index level rather than the reported index level as the underlying
price has also been suggested in a study for the S&P 500 options market by Jackwerth/Rubinstein
(1995), p. 9.

15 For a motiviation to de…ne moneyness with respect to the forward price rather than the spot price,
see Natenberg (1994), pp. 106-110.
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number of trading days a scatterplot as shown in Figure 1 (left graph) was observed.
Call and put implied volatilities are symbolized by crosses and squares, respectively.

The systematic di¤erences apparent from Figure 1 (left graph) can be traced back to
a biased index level caused by dividend payments. The DAX index calculation rests

on the assumption that cash dividends are reinvested after deduction of the corporate
income tax for distributed gains from the gross dividend DIV . This tax rate s currently

amounts to 30%: If the marginal investor’s tax rate sm is smaller than s; he receives
an extra dividend of ¢DIV = (s ¡ sm)DIV .16 In the following, this is referred to

as the “di¤erence dividend”. Since the value of the dividend payment to the investors
right before distribution is higher than the reinvestment amount after …ctitious taxes,

the continuously updated DAX falls by an amount of ¢DIV on an ex-dividend day.
If sm > s; the opposite holds. As a consequence, the di¤erence dividend has the same

e¤ect as an ordinary dividend in the case of unprotected options and futures.

In the following we assume that dividends are sure payments. Letting ¢DIVt;T denote
the time T terminal value of the di¤erence dividend incurred between t and T , we get

a modi…ed version of our futures pricing formula (1):

Ft;n(TF ) = St;ner(TF¡t) ¡ ¢DIVt;TF ; (2)

or equivalently
St;n = Ft;n(TF )e¡r(TF¡t) +¢DIVt;TF e

¡r(TF¡t): (3)

The di¤erence dividend does not only have an impact on the valuation of DAX futures,
but also in‡uences the valuation of DAX options and the form of the put-call-parity.

The modi…ed put-call-parity is given by the equation:

Ct;n (TO) ¡ Pt;n (TO) = St;n ¡ ¢DIVt;TOe
¡r(TO¡t) ¡Xe¡r(TO¡t); (4)

or, combining equations (3) and (4):

Ct;n (TO) ¡ Pt;n (TO) = Ft;n(TF )e¡r(TF¡t) +¢DIVt;TF ;TO ¡Xe¡r(TO¡t); (5)

where Ct;n (TO) denotes the price of a DAX call with strike price X and maturity TO
on day t at minute n, Pt;n (TO) is the price of the corresponding put and ¢DIVt;TF ;TO is
de…ned by

¢DIVt;TF ;TO := ¢DIVt;TF e
¡r(TF¡t) ¡ ¢DIVt;TOe

¡r(TO¡t): (6)

16 Ultimately, distributed gains are only subjected to the personal income tax of the owners. This is
achieved by the German ”Körperschaftsteuer-Anrechnungsverfahren”. For a thorough analysis of
the in‡uence of cash dividends on the pricing of DAX futures see Röder (1994), p. 86 ¤.
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Let ¾Callimp;t;n(St;n; TO) denote the implied call and ¾Putimp;t;n(St;n; TO) the implied put volatil-
ity of an option trade. Only if the underlying price in the implied volatility calculation

is set to eSt;n := St;n¡¢DIVt;TOe¡r(TO¡t), put-call-parity implies that ¾Callimp;t;n(St;n; TO) =
¾Putimp;t;n(St;n; TO). This corresponds to the usual treatment of dividends within the Black-

Scholes formula. Using (3) and (6) the adjusted underlying price eSt;n can also be written
as:

eSt;n = Ft;n(TF )e¡r(TF¡t) +¢DIVt;TF ;TO : (7)

Apparently, our original futures pricing model (1) yields the correct underlying price
eSt;n if the option’s and future’s expiration coincide: In all other cases, the calculated
underlying price, which was hitherto assumed to be equal to Ft;n(TF )e¡r(TF¡t), has to

be adjusted according to equation (7). The adjustment amount ¢DIVt;TF ;TO is identical
for all trades on day t. Whereas dividend information is publicly available, the marginal

investor’s tax rate is unknown. Therefore, we apply an implicit method to estimate
¢DIVt;TF ;TO .17 This approach relies on the assumption that put-call-parity holds. If

TO = TF , the term ¢DIVt;TF ;TO is set to zero. Otherwise, we preselect all options with
a degree of moneyness between 0.9 and 1.1 and identify pairs of puts and calls with

the same strike price and the same expiry provided that they are traded in the same 5
minute interval. For each pair, an estimate ¢ dDIV t;TF ;TO for ¢DIVt;TF ;TO is computed

from (5). If the paired call and put options are traded in di¤erent minutes n1 and n2
within the 5 minute interval, the futures price in equation (5) is set equal to the average

of Ft;n1 and Ft;n2. To avoid biases due to outliers, we do not consider ¢DIVt;TF ;TO values
greater than 15 points.18 If the number of matched pairs on day t exceeds one, we take

the average of the individual adjustment amounts as …nal estimate of ¢DIVt;TF ;TO . The
same procedure is repeated for all option’s maturities traded on day t: Using these
estimates of ¢DIVt;TF ;TO we compute the modi…ed underlying index level according to

(7) and newly calculate all implied volatilities.

An inspection of all scatterplots reveals that this implied estimation of the relevant

underlying index level solves the problem of the di¤erence dividend. For example, after

17 A similar approach is used by the Deutsche Börse within their VDAX framework (see Deutsche
Börse, 1997, p. 13).

18 A thorough analysis of those months where ¢DIVt;TF ;TO is supposed to be high in absolute values
reveals that 15 index points can be regarded as an upper bound to ¢DIVt;TF ;TO . The adjustments
are highest in April and on trading days after the third Friday in March. Here the nearest option’s
maturities are April and May, whereas the next future expires in June. Since most DAX corporations
pay dividends in May, these fall into the period between the expiration dates of option and future.
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increasing the unadjusted DAX index by approximately 8 index points, the left graph of
Figure 1 turns into the right graph, in which call and put implied volatilities no longer

systematically deviate from each other.

In a …nal step, we eliminate all options that violate the well-known arbitrage bounds or

have implied volatilities higher than 150%.

At the DAX options market, liquidity is very much concentrated in short-term options
and declines exponentially with increasing time to expiration. Of the total number

of 3,193,860 options, 88% expire within the next 90 calendar days. The call trades
distribution across degrees of moneyness is clearly skewed to the left whereas the put

trades distribution is skewed to the right. This means that out-of-the money options
are traded far more frequently than in-the-money options. Since the estimation of the

strike pro…le in Section 4 requires a su¢cient variety of strike prices, we include both
calls and puts in our empirical study.

4 Characterising the Strike Pro…le of DAX Implied

Volatilities

4.1 Estimation method

The relation between the Black-Scholes implied volatility, the exercise price and the

time to maturity is supposed to vary through time. To capture these variations, we
include only one trading day’s data in any cross sectional analysis. The daily implied

volatility surface across strike prices and times to maturity could be estimated assuming
a speci…c function such as (see Ané/Geman, 1999)

¾imp;t(M;T ) = a0t + a1tM + a2tM2 + a3t(T ¡ t) + a4t(T ¡ t)2 + a5tM(T ¡ t):

This approach, however, rests on the a priori knowledge of the adequate functional pat-

tern. Especially the in‡uence of the time to maturity seems uncertain. An inappropriate
modelling of this component would also distort the estimation of the strike pro…le. Be-

sides, the primary goal of this paper is to explain time variations of the smile pattern as
opposed to analyzing the term structure of implied volatilities. For these reasons, we do

not estimate the complete surface but focus on the implied volatility pattern conditional
on a …xed time to expiration. The constant time to maturity ensures that day to day

‡uctuations of the smile can be attributed to factors other than the expiration date.
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As was documented in Section 3, the trading activity in DAX options strongly concen-
trates on options with less than three months time to expiration. When constructing the

DAX volatility index, VDAX, the Eurex chose a time to maturity of 45 calendar days
as the most typical and relevant period length. This avoids the strong ‡uctuations of

implied volatility that typically occur close to expiry. We follow this choice and restrict
our empirical analysis to the smile pattern for a given time to expiration of 45 calendar

days corresponding to approximately 33 trading days.

Obviously, options with the desired time to expiration are not always available. Thus,
we set up the smile pattern separately for the two neighbouring maturities. Basing

on these, we approximate the relevant pattern using the linear interpolation (see, e.g.,
Wilmott, 1998, p. 290)

¾2imp;t(M;T0 = t+ 45) =
T2 ¡ T0
T2 ¡ T1

¾2imp;t(M;T1) +
T0 ¡ T1
T2 ¡ T1

¾2imp;t(M;T2) (8)

where T0 : assumed (…ctitious) expiration date 45 calendar days in the future
T1 : latest available expiration date before T0 or equal to T0
T2 : earliest available expiration date after T0.

One possibility to extract the smile pattern from the daily database is to assign all

records with the same expiration date to di¤erent classes according to their degree of
moneyness (see, e.g., Ané/German, 1999; Pena/Rubio/Serna, 1999). The smile is then

represented by the relationship between the moneyness classes and the groups’ average
implied volatilities. This approach does not require an a priori speci…cation of a function

describing the smile. Yet the class estimates might be imprecise because they are each
based on only a subsample of the daily database. If there are many classes, some of

them will hardly be occupied. With a small number of classes, on the other hand,
options with markedly di¤erent degrees of moneyness would be combined. Because of

these di¢culties we estimate the smile pattern using a regression approach. This should
be superior to the grouping procedure if the functional form of the relation between

implied volatilities and moneyness can be rather precisely speci…ed for the chosen time
to expiration.

The strike pro…le of implied volatilities is often modelled by a quadratic regression of

the form19

¾imp = ¯0 + ¯1M + ¯2M
2 + " (9)

19 This regression is related to a certain option’s trading day t and a certain time to maturity ¿ : The
indices t and ¿ are dropped for convenience of presentation.
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where ¯i; i = 0; 1; 2 are regression coe¢cients and " denotes a random disturbance (see,
e.g., Ripper/Günzel, 1997). In principle, this function is able to capture a true smile as

well as a skew pattern. An inspection of our data, though, reveals that this approach
is biased in that it often underestimates the implied volatility of options with M > 1.

Figures 2 to 4 illustrate typical patterns in DAX implied volatilities. Most often, the
“smile” is better characterized by a “sneer” (Fig. 2), with the negative relation between

implied volatility and moneyness extending clearly beyond M = 1. Only when the call
(put) is deep out-of-the-money (in-the-money) the implied volatility function forms a

minimum and eventually rises slightly. The quadratic regression line in Figure 2 (dotted
line) obviously does not capture this increase. A literal “smile” pattern, as shown in

Figure 3, rarely occurs and is almost exclusively observed for the shorter of the times
to maturity (· 45 days) used in the interpolation. Options with the longer time to

expiration (> 45 days) often exhibit a monotonically decreasing skew pro…le (Fig. 4).

To account for the asymmetry of the strike pattern of implied volatilities as apparent
from Figure 2 we use a spline function with the two segments M · 1 and M > 1.

De…ning the dummy variable

D =

8
<
:

0 ; M · 1

1 ; M > 1

the spline function is speci…ed as

¾imp = ¯0 + ¯1M + ¯2M
2 +D

³
°0 + °1M + °2M

2
´
+ "; (10)

where ¯i and °i; i = 0; 1; 2 are constant coe¢cients. To make the function continuous

we require that the segments join at the threshold M¤ = 1, that is

°0 + °11 + °21
2 = 0: (11)

In addition we suppose a smooth, di¤erentiable function. Speci…cally, we require that

d (°0 + °1M + °2M2)
dM

¯̄
¯̄
¯
M¤=1

= °1 + 2°21 = 0: (12)

Introducing the restrictions (11) and (12) in (10) we obtain

¾imp = ¯0 + ¯1M + ¯2M
2 +D°2

³
1 ¡ 2M +M2

´
+ ": (13)

This regression formally di¤ers from the conventional approach (9) in that it includes the
term D (1 ¡ 2M +M2) as an additional explanatory variable. The estimated regression

functions according to Equation (13) are shown in Figures 2 to 4 as the unbroken lines.
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Figure 2: Scatterplot of implied volatilities across moneyness on May 21, 1999 (time to

maturity: 28 calendar days). Dotted line: quadratic regression; unbroken line: WLS spline

regression.
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Figure 3: Scatterplot of implied volatilities versus moneyness on July 30, 1999 (time to

maturity: 21 calendar days). Dotted line: quadratic regression; unbroken line: WLS spline

regression.



4.1 Estimation method 15

The implied volatility of deep in-the-money calls and puts is very sensitive to changes
in the index level. Since small errors in determining the appropriate index level are

unavoidable, the disturbance variance of regression model (13) is supposed to increase
as options go deeper in-the-money. Residual scatterplots support this presumption.

Using the White-test, the null hypothesis of homoskedasticity was rejected in about
60% of all regressions. To account for the heteroskedasticity of the disturbances we

apply a weighted least squares estimation assuming that the disturbance variance is
proportional to the positive ratio of the option’s delta and vega.20 This ratio indicates

how an increase in the index level by one (marginal) point a¤ects the implied volatility
of an option, if its price does not change.

In view of the large number of intraday transactions it is not astonishing that some

extreme deviations occur representing “o¤-market” implied volatilities. They can, for
example, be due to a faulty and unintentional input by a market participant. In this

case, the trade can be annulled if certain conditions are ful…lled. To exclude such
unusual events we discard all observations corresponding to large errors of more than

four standard deviations of the regression residuals where the standard deviation is
computed as the square root of the weighted average squared residuals. We then repeat

the estimation on the basis of the reduced sample until no further observations are
discarded. This procedure is known as applying the “4-sigma-rule” (Sachs, 1972, p.

219) or “trimmed regression” (Kmenta, 1997, p. 265). We examined the impact of this
exclusion of outliers and found it to be negligible in all but very few cases.

On the one hand, the precondition of stationarity is best achieved by selecting data from
a short time window. On the other hand, however, if the environment does not change

dramatically, a larger database may improve the precision of the regression estimates.
Our analysis of this tradeo¤ argues in favor of the second view. For example, selecting a

two-hour interval from 2:00 to 4:00 p.m., often strongly reduces the range of strikes for
which call and put prices are available. Therefore, we do not restrict the time window.

Certainly, new pieces of information and large intraday variations in the underlying
index level may alter the shape of the smile structure. But scatterplots of moneyness and

implied volatilities suggest that intraday, the smile pro…le typically at most experiences
a parallel shift (see, e.g., the right graph in Figure 5). This should not signi…cantly

deteriorate the estimates of the shape of the smile.

20 The delta and vega are computed using the implied volatility of the corresponding option. The delta
of puts is multiplied by ¡1 to obtain a positive ratio.
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Figure 4: Scatterplot of implied volatilities across moneyness on May 20, 1999 (time to

maturity: 57 calendar days). Dotted line: quadratic regression; unbroken line: WLS spline

regression.
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Figure 5: Scatterplots of implied volatilities across moneyness on January 7, 1998 (left graph;

time to maturity: 44 calendar days) and January 8, 1998 (right graph; time to maturity: 43

calendar days). Unbroken lines: WLS spline regression.
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A large percentage of all traded DAX options in the period from 1995 to 1999 features
a degree of moneyness between 0.8 and 1.2. We discard all observations outside this

range in order to eliminate potential problems with extreme degrees of moneyness. In
particular, the quadratic form of the regression can only be regarded as an acceptable

model of the smile pattern within a restricted interval around the at-the-money point.

In the examples of Figures 2 to 5 the unbroken lines represent the result of the “trimmed”
WLS spline regressions. In general, plotting the residuals did not reveal any remaining

violations of the assumptions of the chosen regression model.

4.2 Empirical results

For each day t 2 f1; :::; 1211g and for each of the two option’s maturities T1 and T2
surrounding T0 (= t+45 days) we estimate a regression of implied volatility on moneyness
as described in Section 4.1. The average T1-option expires in about 30 days and the

average T2-option in about 60 days.

Across the 1211 days during the sample period the average adjusted R2 values for the
T1- and T2-options are 94:09% and 95:55%, respectively.21 This indicates that, using

our regression model, most of the variation of implied volatilities can be attributed to
a variation of the degree of moneyness. Extending our regression analysis to longer

option’s maturities, we …nd similar average R2 values. The goodness-of-…t does not
seem to depend neither on the maturity nor the liquidity of an option.

VDAX Index Tracking

Our choice of a constant time to maturity of 45 days was partly motivated by the cor-
respondance to the volatility index VDAX. This index represents the implied volatility

of at-the-money DAX options with a remaining lifetime of 45 days. It is constructed as
follows: for each DAX option’s maturity traded at a given point in time, we calculate a

volatility subindex based on the implied volatilities of the two calls and puts with strikes
nearest to the DAX futures or forward price for that maturity. The VDAX is then de-

21 It should be noted that in the case of a WLS regression model there exists no single generally
accepted de…nition of R2. The reported values are based on the non-weighted WLS regression
residuals. The meaning of this R2 is not exactly the same as in a OLS regression (for more details,
see e.g. Greene, 1997, p. 509).
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termined by linear interpolation between the two subindices which represent times to
maturity next to 45 days (see Deutsche Börse, 1997).

By evaluating our regression functions for a moneyness equal to one we obtain estimates
of at-the-money implied volatilities for the T1- and T2- options for each day in the sample.

Employing the interpolation scheme (8), also used by the Eurex, we are able to construct
a volatility index SVDAX, which we expect to bear great resemblance to the VDAX.
In fact, Figure 6 shows that the SVDAX and the VDAX (daily closing prices) follow

almost identical paths. In this …gure, the VDAX is reduced by 8 percentage points in
order to allow a distinction between both graphs. The strong correspondence between

the two indices also manifests itself in an almost perfect positive correlation of 0:997
within the sample period.22
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Figure 6: SVDAX and VDAX (shifted downwards by 8 percentage points) on a daily basis

over the period January 1995 to October 1999.

Average Parameter Estimates

Table 1 reports the average and the standard deviation of the daily coe¢cient estimates
for each parameter and for each of the two maturities T1 and T2. As expected, the

coe¢cient b̄
1 is on average negative as opposed to the positive average slope coe¢cient

22 The largest di¤erence between VDAX and SVDAX was observed on August 15, 1997. A close
examination of this day’s data supports the correctness of SVDAX.
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b̄
2. The asymmetry of in- and out-of-the-money implied volatilities is apparent from the

positive b°2-value. The shape of the volatility smile proves to be quite di¤erent for the two
option’s maturities. Considering the underlying deterministic implied volatility function

(smile function) ¾imp = ¯0 + ¯1M + ¯2M2 + D°2 (1 ¡ 2M +M2) the computation of
the slope and the curvature (…rst and second derivative) relative to moneyness yields

¯1+2¯2M +D°2 (¡2 + 2M) and 2¯2+D2°2, respectively. The daily regression results
show that in general the smile function for the T1- options is steeper and more convex

than the one for the T2- options. The average second derivative of the T1-maturity smile
of 2:1618+D ¢ 5:372 is signi…cantly higher than the corresponding value of the T2-smile,

0:5296 + D ¢ 2:0968. Due to this higher convexity, the T1-smile function on average
reaches its minimum at distinctly lower degrees of moneyness than the T2-function. The

minimum is almost always located at degrees of moneyness clearly above one, implying
a pronounced skew. With regard to the three smile patterns introduced in Section 4.1,

the T1-option mostly exhibits a smile of type 1 whereas type 3 is represented by the
typical pattern of T2-maturity options. The average at-the-money implied volatility in

the sample, given by b̄
0+ b̄

1+ b̄
2, amounts to 20.82% for the T1-options and 21.51% for

the T2-options. This means that on average the term structure of volatility is slightly

upward sloping in this time to maturity region.

T1(· 45 days) T2(> 45 days)
b̄
0

sb̄0

1:8133

1:3613

0:8828

0:9100
b̄
1

sb̄1

¡2:6860

2:8391

¡0:9325

1:8719
b̄
2

sb̄2

1:0809
1:4434

0:2648
0:9551

b°2
sb°2

2:6860
2:6484

1:0484
1:9024

Table 1: Average and standard deviation of the daily parameter estimates over the period

January 1995 to October 1999.

The standard deviations in Table 1 indicate that there is considerable variation in the
coe¢cient estimates from day to day. This observation, however, cannot be taken as

evidence for a strongly changing smile pattern. Distinctly di¤erent parameters of the
speci…ed smile function can produce almost identical results at degrees of moneyness
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near one. For example, the functions M ! f : f(M) = 1:8 ¡ 2:7M + 1:1M2 and
M ! g : g(M) = 2:897 ¡ 4:9M + 2:2M2 look very similar when plotted in the interval

0:93 ·M · 1:07. The higher coe¢cients ¯0 and ¯2 of function g as compared to function
f are to some extent o¤set by the lower coe¢cient ¯1. Not surprisingly, the daily

parameter estimates are highly correlated.23 Thus, in contrast to Pena/Rubio/Serna
(1999) we do not focus on the dynamics of the single regression coe¢cients to analyze

the dynamics of the smile pattern.

Describing the dynamics of the DAX option’s smile

We use two simple measures to describe each smile pattern of DAX options with a time

to expiration of 45 days. The …rst one, denoted by SP1, is de…ned as the di¤erence
(the “span”) between the implied volatility for moneyness 0.95 and the at-the-money

implied volatility SVDAX. The second measure SP2 is analogously de…ned as the dif-
ference between the at-the-money implied volatility SVDAX and the implied volatility
for moneyness 1.05. The implied volatilities for M = 0:95 and M = 1:05 are generated

by linear interpolation in the same way as the variable SVDAX. The variables SP1
and SP2 can be interpreted as indicators for the average slope of the smile function in

di¤erent moneyness regions.

The moneyness boundaries of 0.95 and 1.05 were choosen such that the number of

observations outside this interval always su¢ces to ensure an accurate estimate of the
implied volatilities at the boundaries. Since on many days option trades with a degree of

moneyness greater than 1.1 or lower than 0.9 do not occur, we were not able to enlarge
the chosen boundaries.

Figure 7 plots the SP1 and SP2 time-series for the sample period from January 1995
to October 1999. Both time series assume only positive values. This is consistent with

our previous …ndings that the typical smile pattern appears as a skew and not as a
symmetric smile. Otherwise, SP2 would have been negative. Both SP1 and SP2 tend

to increase within the sample period. With the exception of the …rst quarter of 1995
and the …rst half of 1997 the variables are highly correlated (correlation coe¢cient of
0:823 over the complete period). Owing to the curvature of the smile function, SP1

lies almost always above SP2. On average, the implied volatility of DAX options with

23 For example, the sample correlation coe¢cient between the time series of the coe¢cients b̄
1 and b̄

2

is -0.998 for both the shorter and longer times to maturity.
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Figure 7: SP1 and SP2 values for the period January 1995 to October 1999.

moneyness 0.95 is 2.44% higher than the at-the-money implied volatility, which in turn

is 1.73% higher than the implied volatility for options with moneyness 1.05. For the
US, Zou/Derman (1999) report a slightly larger total span, SP1 + SP2, of 5%. The

skewness of both variables is su¢ciently large as that the hypothesis that they follow a
normal distribution could be rejected (see the tests of normality suggested by Kmenta,

1997, p. 265).

5 Determinants of the Strike Pro…le

5.1 Explanatory variables

The following time-series regression analysis is concerned with the explanation of the

dynamics of the DAX option’s volatility smile. Because of the high correlation of SP1
and SP2; we do not di¤erentiate beween these variables any longer. Instead, we use the

total span SP ¤ = SP1+SP2 as the variable to be explained. The explanatory variables
are de…ned as proxies for the theoretical explanations of the smile pattern summarized

in Section 2.

The …rst group of explanatory variables characterizes the distribution of intraday returns

of the underlying DAX index by means of the sample standard deviation (V OLMN),
sample skewness (SKMN) and sample kurtosis (KTMN). More formally, dividing each
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trading day t into N periods of equal length we de…ne the continuously compounded
return in period n (n = 1; :::;N) as Rt;n = ln (St;n=St;n¡1) ; where St;n denotes the last

futures-implied DAX index level in period n (n = 0; :::; N) : V OLMN , SKMN , and
KTMN are then given by

V OLMNt =

vuut 1
N ¡ 1

NX

n=1

³
Rt;n ¡ b¹MNt

´2
;

SKMNt =
N

(N ¡ 1) (N ¡ 2)
¢

PN
n=1

³
Rt;n ¡ b¹MNt

´3

(V OLMNt)
3 ;

KTMNt =
N (N + 1)

(N ¡ 1) (N ¡ 2) (N ¡ 3)
¢

PN
n=1

³
Rt;n ¡ b¹MNt

´4

(V OLMNt)
4 ;

where

b¹MNt =
1
N

NX

n=1
Rt;n:

The choice of N as the sampling frequency requires us to balance two opposite e¤ects.
On the one hand, in order to achieve a low sampling error a high N seems desirable.

On the other hand, extremely short intraday time periods give rise to the concern that
market microstructure e¤ects such as price discreteness, nonsynchronous trading or bid-

ask bounces may induce a bias in the estimates (see, e.g., Campbell/Lo/MacKinlay, 1997,
p. 83-144). Chosing an appropriate sampling frequency is largely an empirical matter.

In this paper we follow the choice of Andersen et al. (1999) who use a sampling interval
of 5 minutes. The fact that the three estimators are non-overlapping is advantageous

for several reasons. In particular, outliers are absorbed right away, regime shifts are
incorporated quickly and autocorrelation is not automatically induced in the estimator.

On the other hand, non-overlapping estimators are less robust than their overlapping
counterparts (see, e.g., Jacquier, 1999).

In addition to the variables V OLMN , SKMN , and KTMN , which re‡ect sample

distribution moments for one day, we include three variables to measure the realized
volatility (V OL33), skewness (SK33), and kurtosis (KT33) over the last 33 trading

days. The time window of 33 days is selected to correspond with the time to expiration
of the options under consideration. Denoting by St the last futures-implied DAX index

level on trading day t and by Rt = ln(St=St¡1) the continously compounded one day
return, the variables are de…ned as

V OL33t =

vuut 1
K ¡ 1

KX

k=1

³
Rt¡k+1 ¡ b¹33t

´2
;
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SK33t =
K

(K ¡ 1) (K ¡ 2)
¢

PK
k=1

³
Rt¡k+1 ¡ b¹33t

´3

(V OL33t)
3 ;

KT33t =
K (K + 1)

(K ¡ 1) (K ¡ 2) (K ¡ 3)
¢

PK
k=1

³
Rt¡k+1 ¡ b¹33t

´4

(V OL33t)
4 ;

where

b¹33t =
1
K

KX

k=1
Rt¡k+1

and K = 33.24 As opposed to V OLMN , SKMN , and KTMN the daily time series
of V OL33, SK33, and KT33 are overlapping and thus necessarily autocorrelated. This

issue is adressed in Section 5.2.

If the estimated intraday return distribution or the distribution of the daily returns in the
recent past were representative of the return distributions in the future, we would expect

the measures of skewness to exert a negative in‡uence and the measures of kurtosis to
exert a positive in‡uence on the span of implied volatilities.

The next explanatory variable is a proxy for the volatility of volatility parameter of
stochastic volatility models. This parameter, which measures the speed with which

volatility is changing, can be interpreted as a stronger indicator of the degree of uncer-
tainty in the market of the underlying than the volatility of the underlying itself. The

smile should become more pronounced when this uncertainty rises. Our proxy V V OL
is de…ned as the volatility of the volatility returns over the last 33 trading days:

V V OLt =

vuut 1
K ¡ 1

KX

k=1

³
RVt¡k+1 ¡ b¹Vt

´2
; b¹Vt =

1
K

KX

k=1
RVt¡k+1;

where K = 33 and the daily continously compounded volatility return is calculated as
RVt = ln (V OLMNt=V OLMNt¡1) :

As was documented in Section 2, another common explanation for the smile pattern is
the existence of jumps in the price process of the underlying asset. Jumps are certainly

di¢cult to detect in discretely sampled time series. We use a very simple proxy (JUMP ),
which is de…ned as the continously compounded overnight return of the underlying asset.

This overnight jump is computed as the di¤erence betwen the logarithm of the opening
underlying price on day t and the logarithm of the closing price on day t ¡ 1, divided

by the intraday volatility of the last day V OLMNt¡1. If JUMP is high (low) it implies

24 To calculate the values at the beginning of 1995 we also computed the futures-implied DAX index
levels at the end of 1994.
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that the overnight price change was large (small) compared with the last day’s volatility.
JUMP can be interpreted as the standardized overnight return caused by the arrival of

new information while the market was closed. We expect negative information (negative
JUMP -value) to increase SP ¤.

A related variable isDAXRT , which, for each trading day t, is de…ned as the continously
compounded intraday return, calculated on the basis of the opening and the closing
price of the futures-implied DAX on day t: Whereas JUMP expresses the overnight

return, DAXRT is the intraday return during trading hours. It is often hypothesized
that negative intraday returns lead to higher at-the-money implied volatilities, and vice

versa. The at-the-money volatility is in turn postulated to be positively related to the
smile skewness measured by SP ¤. In sum, DAXRT can be interpreted as a short-term

market momentum measure, which represents a potential in‡uence of the level of implied
volatilities and the shape of the smile pattern.

The stochastic volatility models lead to the conclusion that the volatility smile should
also depend on the correlation between DAX returns and DAX volatility. To measure

this in‡uence we include a variable CORR, de…ned as the correlation coe¢cient between
the daily continously compounded volatility returns RVt and the daily continously com-

pounded DAX returns Rt over the last 33 trading days.

The last explanatory variable (PV OTMP ) is supposed to be a proxy for market fric-

tions. It is de…ned as the daily trading volume of out-of-the-money put options as a
percentage of the total trading volume on the same day. All puts with a degree of
moneyness lower than 0.95 are thereby considered as “out-of-the-money”. As was illus-

trated in Section 3, out-of-the-money put options are often illiquid. Since most clients
are interested in buying rather than selling out-of-the-money puts, short positions are

often almost exclusively held by market makers. As a result, their options portfolio
may be unbalanced forcing them to hedge dynamically by taking positions in the un-

derlying asset. Because this causes costs and is not riskless, the market maker might
demand a premium for taking short positions in out-of-the-money puts. According to

this hypothesis SP ¤ should be positively related to PV OTMP . We do not include
out-of-the-money calls in the de…nition of this variable because short positions in these

options are expected to be less strongly concentrated on market makers.
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5.2 Stationarity and serial correlations

A key assumption in the classical linear regression model is that the disturbances are

uncorrelated. This is questionable in a time-series model since the disturbances might
represent a number of neglected variables which move gradually over time. The conse-

quences of serially correlated disturbances for the estimation method depend on whether
the series is (covariance) stationary, i.e. whether the autocovariances are constant over

time. A su¢cient condition for the stationarity of the disturbances is that all variables in
the regression follow a stationary process. Nonstationary variables exhibit a determin-

istic or stochastic time trend, corresponding to trend-stationary or di¤erence-stationary
processes (see, e.g. Maddala, 1988, p. 212 f.). The regression of one di¤erence-stationary

variable on another will very often produce a “signi…cant” relationship, even if the two
are, in fact, unrelated (Granger/Newbold, 1974). This is known as the problem of spu-

rious regression.
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Figure 8: Autocorrelation (ACF) and partial autocorrelation function (PACF) for SP ¤.

The autocorrelation (ACF) and the partial autocorrelation function (PACF) can serve

as indicators of whether a series is stationary. Figure 8 shows the ACF and PACF for
SP ¤ over the sample period from 1995 to 1999. The slow decay of ACF indicates either

a large characteristic root, a unit root, or a trend stationary process (Enders, 1995, p.
211). Shocks to a unit root process are permanent so that the variance goes to in…nity

as time approaches in…nity.

Applying the augmented Dickey-Fuller test to SP ¤, we cannot reject the null hypothesis
of a unit root on conventional signi…cance levels. Yet as is well known, the available tests

have low power to distinguish between unit root and near unit root processes (Enders,
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1995, p. 261). Our failure to reject the null hypothesis does not su¢ce to draw the
conclusion that a unit root exists. As far as SP ¤ is concerned, economic theory does not

support a unit root since the variable should be subject to an upper arbitrage bound
even if severe violations of the Black-Scholes assumptions occur. Thus, we suppose that

SP ¤ follows a stationary process. Similar arguments hold for the explanatory variables.

The SP ¤ time series exhibits partial autocorrelations of lags 2, 3 and 4 which are sig-
ni…cantly positive, though small in absolute values.25 Therefore, the variable might be

modelled by an AR(1) process,

SP ¤t = a0 + a1SP ¤t¡1 + "t; ja1j < 1: (14)

Estimates of the autocorrelation coe¢cient a1 are given in Table 2 (standard errors are

in parentheses). In the total period and two subperiods of approximately equal size
the coe¢cient exceeds 0:96. The optimal s-days-ahead forcast SP ¤t+s for the stationary

AR(1) process (14) conditional on SP ¤t ; SP ¤t¡1; ::: is given by (see, e.g., Hamilton, 1994,
p. 80):

SP ¤t+s = c+ a
s
1(SP

¤
t ¡ c)

where

c =
a0

(1 ¡ a1)
:

The estimates of the coe¢cient c are shown in Table 2.26 They illustrate that the level
of SP ¤-values increased from the …rst to the second subperiod. All in all, the estimated

coe¢cients of the assumed AR(1) model seem su¢ciently stable so as to allow the
conclusion that past estimates of an AR(1) model are useful in predicting SP ¤ on the

next day.

1995-99 1995-06/97 06/97-1999
ba0 0:0008 0:0009 0:0017

ba1
0:9812
(0:029)

0:9736
(0:040)

0:9673
(0:041)

bc 0:0434 0:0349 0:0512

Table 2: Estimated coe¢cients of a stationary AR(1) process for SP*.

25 For example, the sample partial autocorrelation of lag 2 for 1995 to 1999 is 0:074 with a standard
error of 0:029.

26 The values were exactly calculated and then rounded to 4 digits.
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5.3 Estimation method

The observation of signi…cant correlations in the time series of SP ¤ does not in itself

reveal which fundamentals determine the smile pattern. Detecting these fundamentals
is important to understand the economic rationale underlying the time series behaviour

of the smile pattern. We postulate that SP ¤ linearly depends on the variables de…ned
in Section 5.1, and a random disturbance ":

SP ¤t = ®0 +
10X

i=1
®iXit + "t (15)

where ®i(i = 0; :::; 10) are regression coe¢cients and Xi is the ith element of the set of
variables {V OLMN;SKMN;KTMN;V OL33; SK33; KT33; V V OL; JUMP;DAXRT;

CORR;PV OTMP}. Equation (15) formulates a purely explanatory model. The re-
lationship is obviously inappropriate for analyzing the predictive power of the chosen

variables, because their contemporaneous values are included without a lag.

Estimating regressions according to Equation (15) for the total time period from 1995

to 1999 yields highly correlated residuals. When the disturbance is autoregressive, the
least squares estimators of the regression coe¢cients are ine¢cient and their estimated

variances are biased.

One common method of handling serially correlated disturbances is to model them
by a stationary AR(1) process and to compute generalized least squares estimators.27

Following this direction we carry out the iterative Cochrane-Orcutt transformation (see,
e.g., Kmenta, 1997, p. 314), which consists of successive applications of the ordinary

least squares method.28

5.4 Empirical results

The empirical results are summarized in the …rst three columns of Table 3, where b½e
denotes the autocorrelation of the residuals in the last iteration of the Cochrane-Orcutt

27 An alternative to resolving the problem of serially correlated disturbances is to add lagged values of
the independent variables to the regression model. In principle this approach seems preferable to a
generalized least squares estimation such as the Cochrance-Orcutt transformation, since it aims at
improving the speci…cation of an incomplete regression model (Granger/Hyung/Jeon, 1998). This
approach, however, gives rise to the di¢culty that the number of explanatory variables increases
considerably, and the regressors may exhibit a high degree of multicollinearity (Theil, 1971, p. 259).

28 In related work this method is, e.g., applied by Longsta¤ (1995).
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procedure.29 These coe¢cients are used to transform the dependent and independent
variables. R2

adj is the adjusted coe¢cient of determination. The regression slopes are re-

ported as standardized coe¢cients with the corresponding t-statistics attached in paren-
theses.

The estimated residual autocorrelation coe¢cients b½e are much higher than the val-
ues obtained in the …rst step. Using these without further iterations is known as the
Cochrane-Orcutt two-step method (see, e.g., Kmenta, 1997, p. 315). The higher values

of b½e are partly due to the fact that b½ is obtained from a spurious regression, which
falsely assigns a large part of the autocorrelation in the disturbances to the spurious

relationship between the explanatory variables and SP ¤. Thus, the true autoregressive
parameter ½ is underestimated. In our study this method would yield markedly higher

coe¢cients of determination than reported in Table 3.30 The iterative Cochrane-Orcutt
method applied in this study leads to autoregression estimates of about 0:97, depending

on the sample period. When the autoregression coe¢cient approaches unity, the iter-
ative Cochrane-Orcutt procedure is asymptotically equivalent to di¤erencing the data

before estimating the relation (Hamilton, 1994, p. 562). Therefore, these two approaches
to avoid spurious regressions are similar in our context.31

To analyze the stability of the regression coe¢cients, we as before subdivide the sample
period into two subperiods. The results reveal that at most 4:5% of the variation of

the transformed variable SP ¤ can be attributed to the variation of the transformed
explanatory variables. The hypothesis that none of the independent variables has an

in‡uence on SP ¤ is rejected on the 1% signi…cance level in all three periods. Estimated
over the complete sample period, the coe¢cients of the variables V OLMN , SKMN ,

V V OL, JUMP and PV OTMP are signi…cantly di¤erent from zero at least on the
5% level. Yet, only two of these coe¢cients have the predicted sign: strongly varying

intraday volatilities in the index level of the recent past, measured by V V OL, seemingly
re‡ect great uncertainty of market participants and a rather high probability of a sharp

stock market decrease. Besides, the positive relation between PV OTMP and SP ¤ is
consistent with the hypothesis that a high demand for out-of-the-money puts pushes

29 The iterations are repeated until the change in ½ is lower than 0.001.
30 Harvey (1990) notes: “The Cochrance-Orcutt iterative procedure [...] implies no improvement as far

as asymptotic properties are concerned, although it may have a signi…cant e¤ect in small samples.”
(p. 194).

31 Di¤erencing the data is usually “not recommended unless it is really believed that ½ is very close to
unity” (Kmenta, 1997, p. 322; see also Hamilton, 1994, p. 562).
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1995-06/97 06/97-1999 1995-99 1995-99
Method CO CO CO NW

b½e 0:969 0:968 0:982 –

R2
adj (in %) 4:5 3:7 2:6 41:1

F statistic 2:67¤¤ 3:07¤¤ 3:98¤¤ ¡

b®1[V OLMN ]
¡0:120¤

(¡2:51)
¡0:080
(¡1:70)

¡0:086¤¤

(¡2:64)
¡0:052
(¡0:80)

b®2[SKMN ]
¡0:038
(¡0:86)

0:173¤¤

(3:80)
0:084¤¤

(2:73)
0:037
(1:49)

b®3[KTMN ]
0:041

(0:89)

0:064

(1:39)

0:050

(1:60)

0:028

(0:99)

b®4[V OL33]
¡0:037

(¡0:85)

¡0:055

(¡1:26)

¡0:037

(¡1:24)

0:238¤¤

(3:81)

b®5[SK33]
0:017
(0:30)

0:006
(0:14)

0:021
(0:60)

¡0:027
(¡0:51)

b®6[KT33]
¡0:023

(¡0:43)

¡0:017

(¡0:39)

¡0:013

(¡0:37)

¡0:160¤¤

(¡3:26)

b®7[V V OL]
0:068

(1:71)

0:110¤

(2:52)

0:077¤¤

(2:63)

0:121¤

(2:28)

b®8[JUMP ]
0:066
(1:39)

0:079
(1:60)

0:079¤

(2:38)
¡0:005
(¡0:21)

b®9[DAXRT ]
0:063

(1:20)

¡0:089

(¡1:73)

¡0:043

(¡1:21)

0:027

(0:92)

b®10[CORR]
0:090¤

(2:10)

0:023

(0:51)

0:044

(1:41)

¡0:106

(¡1:78)

b®11[PV OTMP ]
0:119¤¤

(2:95)
0:047
(1:14)

0:076¤¤

(2:64)
0:366¤¤

(6:92)

* (**): signi…cant on the 5% (1%) level

Table 3: Determinants of the smile pattern: Empirical results. ’CO’ stands for Cochrane-

Orcutt, ’NW’ for Newey-West.
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option prices, since market makers cannot easily neutralize the risk exposure from short
put positions. This …nding corresponds to the importance of transaction costs and

liquidity e¤ects for the pricing of index options earlier reported by Longsta¤ (1995) for
the US and Pena/Rubio/Serna (1999) for the Spanish stock market.

The signs of the other signi…cantly positive slope coe¢cients contradict our expecta-
tions. Ceteris paribus, the span of implied volatilities SP ¤ seems to be augmented by a
low intraday volatility (V OLMN), a positive skewness (SKMN), and a high overnight

return (JUMP ). Especially the negative relation between V OLMN and SP ¤ is incom-
patible with the wide-spread view that the smile pattern gets steeper when intraday

returns are excessively volatile. Our results, which do not re‡ect this experience, might
have to do with the interrelation of V OLMN with V V OL apparent from the de…nition

of V V OL (see Section 5.1). If we tried to …nd an economic rationale for the seemingly
positive in‡uence of the skewness SKMN on SP ¤, we could argue that market partici-

pants’ expectations might be contrary to the currently realized returns. This reasoning
clearly illustrates that it is extremely di¢cult to …nd suitable measures for an impor-

tant explanatory variable: the perceptions of the market participants implied in option
prices.

In a recent related study, Pena/Rubio/Serna (1999) generate a time series of daily pa-
rameters describing the contemporaneous smile pro…le on the Spanish index options

market. In a second step these parameters are attributed to a set of explanatory vari-
ables via regression analysis. Although it is certainly impossible to directly compare

test statistics of both studies, the reported R2 of 0:23 at the Spanish market32 seems
to indicate a stronger relationship between explanatory and dependent variables than

observed in Germany.

However, Pena/Rubio/Serna (1999) use a di¤erent method to account for autoregressive
disturbances, which is based on the Generalized Method of Moments (Hansen, 1982).

The authors …rst apply the ordinary least squares method to Equation (15) to obtain
unbiased and consistent estimates of the slope coe¢cients. In order to overcome the

problem of biased standard errors in the presence of autoregressive disturbances, the
objective is then to …nd an appropriate estimator for the asymptotic covariance matrix

of the estimated coe¢cients. Newey/West (1987) have devised such an autocorrelation
consistent estimator (see, e.g., Greene, 1997, p. 506; Campbell/Lo/MacKinlay, 1997, p.

32 See Pena/Rubio/Serna (1999), p. 1169.
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534).

The results of applying this method to our total sample period yields the estimates

presented in the last column of Table 3 with “t ratios” based on Newey-West consistent
standard errors.33 Obviously, the estimates strongly di¤er from the outcomes of the

Cochrane-Orcutt method. The only coincidences of “signi…cant” coe¢cients occurs for
the variables V V OL and PV OTMP . Not surpringly, the adjusted R2 rises sharply.

The Newey-West estimation does not necessitate the speci…cation of the structure of

the variance-covariance matrix ­ of the disturbances. If the structure of ­ is known,
this information is not explicitly used to improve the estimation. In such a situation it

is often preferable to use sample information to estimate ­ and to apply the generalized
least squares method. Since our results clearly indicate that the disturbances can be

modelled by a stationary AR(1) process, the Cochrance-Orcutt procedure seems more
appropriate. In this view, the extremely high t-statistic of the coe¢cient b®10 when using

Newey-West standard errors indicates, at least partly, a spurious relationship. It seems
safe to conclude that the choice of an appropriate method to account for autoregression

is crucial in any attempt to explain the time series behaviour of patterns in implied
volatilities.

6 Summary and conclusions

This paper deals with strike price biases in the pricing of German DAX options relative to

the Black-Scholes model. To compute implied volatilities it is crucial to use synchronized
prices of the option and the underlying asset. We achieve this by properly matching

transaction data for the DAX option and future. The current index level is distorted by
tax e¤ects of dividend payments. We solve this problem by deriving a market implied

correction of the underlying prices from put-call-parity.

Using all call and put prices of each trading day in the sample period from 1995 to

1999, we estimate the smile pro…le via regression analysis. The smile pro…le turns out
to be asymmetric. Therefore, a quadratic regression is not applicable. For this matter,

we formulate a spline regression model with two segments and apply the weighted least

33 To apply the Newey-West estimator, the maximum lag length that receives a nonzero weight has
to be determined in advance. We follow the proposal of Newey/West (1987) to determine this lag
length and obtain a value of 6.
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squares method. The results show a very accurate …t to the data. On average, the
variation of moneyness, which is de…ned as the ratio of strike to futures price, explains

about 95% of the cross-sectional variation of implied volatilities.

The vast majority of all smile patterns appear as a skew. Typically, implied volatilities

decrease monotonically with increasing moneyness beyond at-the-money until, at the
right border, the function rises slightly. The time-series of at-the-money implied volatil-
ities obtained from our regression model is almost perfectly correlated with the German

DAX volatility index, VDAX. We condense the daily smile information in two readily
interpretable measures: the di¤erences between the implied volatilities for degrees of

moneyness of 0:95 and 1:0, as well as 1:0 and 1:05, respectively. These “spans” are
highly correlated in accordance with the observation of a prevailing skew pattern. On

average, an increase in moneyness by 0:1 corresponds to a decrease of implied volatilities
by 4:2 percentage points. This decrease tends to rise in the sample period. It is an im-

portant result of this paper that the span of in-the-money and out-of-the-money implied
volatilities can be modelled very precisely by an AR(1) process. The autocorrelation

coe¢cient exceeds 0:98 throughout the sample period and amounts to approximately
0:97 in two subperiods. This means that the smile pattern “has a long memory” in the

sense that shocks die out slowly.

In the second part of the paper we de…ne proxy variables for the possible theoretical ex-

planations of the smile pattern. The most important explanations refer to time-varying
volatility, jumps, and market frictions. To account for serially correlated disturbances in

our time-series regression we employ the iterative Cochrance-Orcutt transformation. An
alternative method proposed by Newey-West seems to be subject to spurious regression

in our context. This is why it is di¢cult to compare our study with recently published
results of Pena/Rubio/Serna (1999) for the Spanish market. Although the F-statistic is

signi…cant on the 1% level for the sample period and both subperiods, the proportion of
changes of the smile pattern explained by changes of our explanatory variables is small

in absolute values. The proxies for volatility of volatility and the percentage trading
volume of out-of-the-money puts seem to exert a signi…cant positive in‡uence on the

degree of skewness in implied volatilities, as expected by theory. The other in‡uences
are either neglegible or di¢cult to interpret.

All in all, though the smile pattern can be estimated with great precision, our attempt

to uncover the economic variables underlying the dynamics of the smile was not fully
successful. This might be due to several reasons, for example to omitted variables or
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proxies. Perhaps the results indicate that historical distribution measures cannot serve
as unbiased predictors of the true distributions. The strong impact of the stock market

crash in October 1987 on the shape of the smile pattern in the US indicates another
di¢culty: Changes in the strike pro…le of implied volatilities are supposed to vary with

the prevailing market participants’ perception of the crash risk. This is naturally di¢cult
to capture by quantitative proxy variables.
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